Effect of Martensite Volume Fraction on Forming Limit Diagrams of Dual-Phase Steel

2015 ◽  
Vol 24 (5) ◽  
pp. 1781-1789 ◽  
Author(s):  
Mohammad Zaeimi ◽  
Ali Basti ◽  
Majid Alitavoli
2021 ◽  
Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.


Author(s):  
C. Perez Velasquez ◽  
D. Avendano Rodriguez ◽  
C. Narvaez Tovar ◽  
L. Mujica Roncery ◽  
R. Rodríguez Baracaldo

Crack growth resistance in dual-phase steel was studied. The dual phase steel microstructure was modified through heat treatments to increase the martensite volume fraction from 10% to 40%. The as-received and heat-treated samples were evaluated using a uniaxial tensile test, fatigue crack growth test, and fracture toughness test. Extended Finite Element Method (XFEM) was used to simulate the crack growth in compact tension test specimens. The results showed that an increase in martensite volume fraction is an effective way to increase the fracture resistance under different load conditions, quasistatics and dynamic, increasing the fracture toughness, tensile strength and fatigue resistance of the heat-treated material. Presence of a highest content of martensite results in formation of an important number of secondary cracks during the fatigue crack growth, which slow down the crack propagation. Moreover, martensite generates a crack closure over the crack tip, making the propagation difficult due to the irregularities caused by the crack growth on the martensite. Finally, the computational load-displacement curves are in good agreement with the experimental data.  


Sign in / Sign up

Export Citation Format

Share Document