Room-Temperature Charpy Impact Property of 3D-Printed 15-5 Stainless Steel

2017 ◽  
Vol 27 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Sugrim Sagar ◽  
Yi Zhang ◽  
Linmin Wu ◽  
Hye-Young Park ◽  
Je-Hyun Lee ◽  
...  
2021 ◽  
Vol 37 (2) ◽  
pp. 190-201
Author(s):  
Sugrim Sagar ◽  
Yi Zhang ◽  
Hyun-Hee Choi ◽  
Yeon-Gil Jung ◽  
Jing Zhang

1990 ◽  
Vol 194 ◽  
Author(s):  
Vincent C. Nardone ◽  
James R. Strife ◽  
Karl M. Prewo

AbstractThe ability to produce a NiAl intermetallic base composite with dramatically higher energy absorption capability and damage tolerance has been demonstrated. The approach consists of incorporating continuous tubular 304 stainless steel toughening regions throughout the NiAl matrix. To compensate for the increase in density resulting form the 304 stainless steel, B4C particulate was added to the NiAl so that the overall composite density was within 5% of the value for monolithic NiAl. The notched Charpy impact energy absorption of the B4C/NiAl/304 composites was in the range of 15 to 90 J/cm2, compared to a value of 0.8 J/cm2 for NiAl. The higher energies were measured on samples that deflected the crack front more extensively during failure. For a given interfacial condition, the energy absorption increased as the wall thickness of the 304 tubular toughening regions increased. Finally, room temperature tensile testing of the composites resulted in very large failure strains (20–35%) owing to the 304 stainless steel being able to sustain the applied load once the NiAl regions had completely cracked.


2021 ◽  
pp. 102104
Author(s):  
Xianglong Wang ◽  
Oscar Sanchez-Mata ◽  
Sıla Ece Atabay ◽  
Jose Alberto Muñiz-Lerma ◽  
Mohammad Attarian Shandiz ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Kalyan Ghosh ◽  
Martin Pumera

Room temperature electrochemical deposition of transition metal chalcogenide (MoSx) on 3D-printed nanocarbon fibers based electrodes for custom shaped solid-state supercapacitor.


2011 ◽  
Vol 138-139 ◽  
pp. 832-835
Author(s):  
Yong Jie Liu ◽  
Qing Yuan Wang ◽  
Ren Hui Tian ◽  
Xiao Zhao

In this paper, tensile fatigue properties of 316L stainless steel thin sheets with a thickness of 0.1 mm are studied. The tests are implemented by using micro mechanical fatigue testing sysytem (MMT-250N) at room temperature under tension-tension cyclic loading. The S-N curve of the thin sheets descends continuously at low cycle region. Cyclic σ-N curve and ε-N curve are obtained according to the classical macroscopical fatigue theory. The results agree well with the experimental fatigue data, showing that the traditional fatigue research methods are also suitable for description of MEMS fatigue in a certain extent. The effect factor of frequency was considered in this study and the results show that the fatiuge life and the fatigue strength are increased as loading frequency increasing.


Sign in / Sign up

Export Citation Format

Share Document