Microstructure, Hardness and Corrosion Behavior of Gas Tungsten Arc Welding Clad Inconel 625 Super Alloy over A517 Carbon Steel Using ERNiCrMo3 Filler Metal

2020 ◽  
Vol 29 (10) ◽  
pp. 6919-6930
Author(s):  
Farhad Ostovan ◽  
Ehsan Hasanzadeh ◽  
Meysam Toozandehjani ◽  
Ehsan Shafiei ◽  
Khairur Rijal Jamaluddin ◽  
...  
2009 ◽  
Vol 410-411 ◽  
pp. 533-541 ◽  
Author(s):  
W. Chuaiphan ◽  
Somrerk Chandra-ambhorn ◽  
B. Sornil ◽  
Wolfgang Bleck

Gas tungsten arc welding was applied to join AISI 304 stainless steel and AISI 1020 carbon steel sheets with three types of consumables – AISI 308L, AISI 309L and AISI 316L stainless steel wires. Weld metals produced by all consumables exhibited the identical hardness of ca. 350 HV. This value was higher than those of stainless steel and carbon steel base metals, indicating the relatively high strength of weld metals. The corrosive behaviour of weld metals was investigated by a potentiodynamic method. Specimens were tested in 3.5 wt% NaCl solution saturated by laboratory air at 27°C. A pitting potential of weld metal produced by the AISI 309L consumable was higher than those of weld metals produced by the AISI 308L and AISI 316L consumables respectively. The chemical compositions and microstructure of weld metals were also investigated. The pitting corrosion resistance of weld metals produced by different consumables is discussed in the paper in terms of the pitting resistance equivalent number (PREN) calculated from the chemical compositions and the content of delta ferrite in the austenite matrix of the weld metals.


Mechanika ◽  
2019 ◽  
Vol 25 (1) ◽  
Author(s):  
Regita BENDIKIENE ◽  
Saulius BASKUTIS ◽  
Jolanta BASKUTIENE ◽  
Lina KAVALIAUSKIENE

Alloy Digest ◽  
1986 ◽  
Vol 35 (3) ◽  

Abstract INCONEL Filler Metal 601 is a nickel-base alloy that is used for gas-tungsten-arc welding of INCONEL alloy 601. It is the preferred welding product for all gas-tungsten-arc welding of alloy 601. This weld metal is comparable to the base metal (INCONEL alloy 601) in resistance to corrosion and oxidation. This datasheet provides information on composition and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-329. Producer or source: Inco Alloys International Inc..


2014 ◽  
Vol 66 (3) ◽  
pp. 452-458 ◽  
Author(s):  
De-Xing Peng

Purpose – This paper aims to compare the wear performance of carbon steel specimens clad with TiC, WC and TiN powders by the gas tungsten arc welding (GTAW) method under optimum processing conditions. Design/methodology/approach – Various ceramic powders (TiC, WC and TiN) with equal percentages by weight were prepared for use as cladding materials to compare their effects on wear resistance. The wear behaviors of different cladding specimens were evaluated with a rotating-type tribometer under dry sliding conditions. The cladding microstructures were characterized by optical microscopy, scanning electron microscopy and X-ray energy dispersive spectrometry. Findings – The experimental results confirmed that the hardness was also much higher in the carbon steel with cladding than in carbon steel without cladding. The pin-on-disc wear test showed that the wear-resistance of ceramics clad with TiC is better than that in ceramics clad with WC or TiN. The wear scar area of the specimen with TiC cladding was only one-tenth that of carbon steel without cladding. Originality/value – The experiments confirm that the cladding surfaces of ceramic particles reduce wear rate and friction.


2012 ◽  
Vol 246-247 ◽  
pp. 707-711
Author(s):  
Prachya Peasura

ASTM A36 carbon steel is the most commonly available of the hot-rolled steels. This specification covers carbon steel shapes, plates, and bars of structural quality for use in riveted, bolted, or welded construction of bridges and buildings, and for general structural purposes. The research was to study the in effected of gas tungsten arc welding parameters which effects the hardness and physical characteristics of welding for carbon steel ASTM A36. The specimen was carbon steel sheet metal 6 mm thick. The 23 factors experiment was used polarity direct current electrode negative (DCEN) and alternating current (AC), welding current at 90 and100 amperes with tungsten electrode angles at 30 and 60degree. The weld sample was test by hardness and penetration. The result showed that polarity, welding current and tungsten electrode angle had on interaction on hardness and penetration at 95% confidence (p-value < 0.05).The factors made maximum hardness was polarity AC, welding current 100 amp. and tungsten angle 60๐of 803.16 HV. The factors made maximum penetration was polarity DCEN, welding current 100 amp. and tungsten angle 60๐ of 2.71mm. The research data can be used to determine the appropriate gas tungsten arc welding process of carbon steel weld.


Sign in / Sign up

Export Citation Format

Share Document