Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy

Author(s):  
Chandan Choudhary ◽  
Kanai Lal Sahoo ◽  
Himadri Roy ◽  
Durbadal Mandal
2015 ◽  
Vol 1120-1121 ◽  
pp. 983-988
Author(s):  
Li Fang ◽  
Yan Da Zou ◽  
Xue Zhi Zhang ◽  
Henry Hu

In this study, the hexachloroethane (C2Cl6) as a refiner was introduced into a cylindrical squeeze casting of magnesium alloy AM60 with a diameter of 100 mm and a thickness of 25 mm. The casting was prepared under an applied pressure of 30 MPa. The results of tensile testing indicate the tensile properties for the C2Cl6-refined specimens were significantly improved over the untreated AM60 samples. Microstructure analyses with optical microscopes reveal the great grain refining capability of C2Cl6 on squeeze cast magnesium alloy AM60, which should be responsible for the enhanced tensile properties of the refined AM60.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 228 ◽  
Author(s):  
Jitao Zhao ◽  
Mingfang Shi ◽  
Zhenqing Wang ◽  
Lidan Xu

Through studying the effects of the Al–5Ti-x(Mg–30%Ce) refiner on the microstructure of the Al–7Si alloy, we investigated the hardness, tensile, and impact properties of the Al–Si alloy before and after refinement. The refinement results show that Mg–30%Ce can improve the refinement effect of Al–5Ti on Al–7Si, and also refine α-Al and eutectic Si in Al–7Si. When 2%Mg–30%Ce is added, the refining effect of the aluminum–silicon alloy is most obvious. After refinement, the hardness and tensile properties of the Al–7Si alloy improve. When 2%Mg–30%Ce is added to the refiner, the tensile properties of the Al–Si alloy are the best. Dynamic mechanical tests were conducted on refined Al–7Si alloy. The impact toughness of Al–7Si–(Al–5Ti-2(Mg–30%Ce) improved and the impact toughness reached 34.91 J/cm2, which is 78.7% higher than that of Al–7Si–(Al–5Ti) specimens. The separate Hopkinson pressure bar test results show that, under a high strain rate, the strain rate sensitivity of the prepared Al–Si alloy is significant. The specimens of Al–7Si–(Al–5Ti-2(Mg–30%Ce) demonstrated the best anti-impact performance at the same velocity.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6705
Author(s):  
Fang Yu ◽  
Xiangjie Wang ◽  
Tongjian Huang ◽  
Daiyi Chao

In this paper, two types of grain refining alloys, Al-3Ti-0.15C and Al-5Ti-0.2B, were used to cast two types of 7050 rolling ingots. The effect of Al-3Ti-0.15C and Al-5Ti-0.2B grain refiners on fracture toughness in different directions for 7050 ingots after heat treatment and 7050-T7651 plates was investigated using optical electron microscopy (OEM) and scanning electron microscopy (SEM). Mechanical properties testing included both tensile and plane strain fracture toughness (KIC). The grain size was measured from the surface to the center of the 7050 ingots with two different grain refiners. The fracture surface was analyzed by SEM and energy dispersive spectrometer (EDS). The experiments showed the grain size from edge to center was reduced in 7050 ingots with both the TiC and TiB refiners, and the grain size was larger for ingots with the Al-3Ti-0.15C grain refiner at the same position. The tensile properties of 7050 ingots after heat treatment with Al-3Ti-0.15C grain refiner were 1–2 MPa lower than the ingot with the Al-5Ti-0.2B grain refiner. For the 7050-T7651 100 mm thick plate with the Al-3Ti-0.15C grain refiner, for the L direction, the tensile properties were lower by about 10~15 MPa; for the plate with the Al-3Ti-0.15C refiner than plate with Al-5Ti-0.2B refiner, for the LT direction, the tensile properties were lower by about 13–18 MPa; and for the ST direction, they were lower by about 8–10 MPa compared to that of Al-5Ti-0.2B refiner. The fracture toughness of the 7050-T7651 plate produced using the Al-3Ti-0.15C ingot was approximately 2–6 MPa · m higher than the plate produced from the Al-5Ti-0.2B ingot. Fractography of the failed fracture toughness specimens revealed that the path of crack propagation of the 7050 ingot after heat treatment produced from the Al-3Ti-0.15C grain refiner was more tortuous than in the ingot produced from the Al-5Ti-0.2B, which resulted in higher fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document