Energy partitioning and evapotranspiration in a black locust plantation on the Yellow River Delta, China

Author(s):  
Xiang Gao ◽  
Zhenyu Du ◽  
Qingshan Yang ◽  
Jinsong Zhang ◽  
Yongtao Li ◽  
...  
Author(s):  
Xiang Gao ◽  
Zhenyu Du ◽  
Qingshan Yang ◽  
Jinsong Zhang ◽  
Yongtao Li ◽  
...  

Woody plantations play a curtail role in ecological security along coastal zones. Understanding of energy partitioning and evapotranspiration (ET) over black locust plantations can reveal land-atmosphere interaction process and help us to optimize this plantation for land management in the Yellow River Delta. In this study, we investigated energy fluxes, ET in particular, and their related biophysical factors using eddy covariance techniques over a black locust plantation in 2016, 2018, and 2019. Downward longwave radiation offsets 84%–85% of upward longwave radiation, upward shortwave radiation accounted for 12%–13% of downward shortwave radiation, and the ratio of net radiation (Rn) to downward radiation was 18%–19%in the three years. During growing seasons, latent heat flux was the largest components among radiation balance terms; during non-growing seasons, sensible heat flux was a dominant component. ET was mainly controlled by Rn, air temperature, vapor pressure deficit and leaf area index (LAI). Annual ET was smaller than the sum of precipitation and irrigation, and cumulative ET was larger than cumulative precipitation during non-growing seasons. The phenology of black locust influenced the seasonal variation in daily ET, mainly via LAI. ET was larger under sea wind than under land wind, mainly because soil water content at 10-cm depth was greater under sea wind in daytime. Seasonal patterns of daily evaporative fraction, Bowen ratio, crop coefficient, Priestley–Taylor coefficient, surface conductance (gs), and decoupling coefficient were mainly controlled by LAI, and the threshold value of daily gs was approximately 8 mm s−1 over the studied plantation.


Author(s):  
Jianfeng Zhang ◽  
Guang-Cai Chen ◽  
Shangjun Xing ◽  
Qixiang Sun ◽  
Qihua Shan ◽  
...  

2013 ◽  
Vol 37 (6) ◽  
pp. 503-516 ◽  
Author(s):  
Li-Qiong YANG ◽  
Guang-Xuan HAN ◽  
Jun-Bao YU ◽  
Li-Xin WU ◽  
Min ZHU ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Meiyun Tang ◽  
Yonggang Jia ◽  
Shaotong Zhang ◽  
Chenxi Wang ◽  
Hanlu Liu

The silty seabed in the Yellow River Delta (YRD) is exposed to deposition, liquefaction, and reconsolidation repeatedly, during which seepage flows are crucial to the seabed strength. In extreme cases, seepage flows could cause seepage failure (SF) in the seabed, endangering the offshore structures. A critical condition exists for the occurrence of SF, i.e., the critical hydraulic gradient (icr). Compared with cohesionless sands, the icr of cohesive sediments is more complex, and no universal evaluation theory is available yet. The present work first improved a self-designed annular flume to avoid SF along the sidewall, then simulated the SF process of the seabed with different consolidation times in order to explore the icr of newly deposited silty seabed in the YRD. It is found that the theoretical formula for icr of cohesionless soil grossly underestimated the icr of cohesive soil. The icr range of silty seabed in the YRD was 8–16, which was significantly affected by the cohesion and was inversely proportional to the seabed fluidization degree. SF could “pump” the sediments vertically from the interior of the seabed with a contribution to sediment resuspension of up to 93.2–96.8%. The higher the consolidation degree, the smaller the contribution will be.


2021 ◽  
pp. 117330
Author(s):  
Wei Zhu ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang ◽  
Wenping Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document