Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China

Author(s):  
Xiaoying Li ◽  
Huijun Jin ◽  
Long Sun ◽  
Hongwei Wang ◽  
Ruixia He ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Qing Zhang ◽  
Wen Zhang ◽  
Yongqiang Yu ◽  
Tingting Li ◽  
Lijun Yu

Responses of crop growth to climate warming are fundamental to future food security. The response of crops to climate change may be subtly different at their growing stages. Close insights into the differentiated stage-dependent responses of crops are significantly important in making adaptive adjustments of crops’ phenological optimization and cultivar improvement in diverse cropping systems. Using the Agro-C model, we studied the influence of past climate warming on crops in typical cropping systems in China. The results showed that while the temperature had increased distinctly from the 1960s to 2000s, the temperature frequency distributions in the growth season of crops moved to the high-temperature direction. The low temperature days during the crop growth periods that suppress crop growth decreased in the winter wheat area in North and East China, rice and maize areas in Northeast China, and the optimum temperature days increased significantly. As a result, the above ground biomass (AGB) of rice and maize in Northeast China and winter wheat in North and East China increased distinctly, while that of rice in South China had no significant change. A comparison of the key growth periods before and after heading (silking) showed that the warming before heading (silking) made a great contribution to the increase in the AGB, especially for winter wheat.


2013 ◽  
Vol 14 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Zhengguo Li ◽  
Peng Yang ◽  
Huajun Tang ◽  
Wenbin Wu ◽  
He Yin ◽  
...  

2021 ◽  
Vol 133 ◽  
pp. 108389
Author(s):  
Danyang Yuan ◽  
Liangjun Zhu ◽  
Paolo Cherubini ◽  
Zongshan Li ◽  
Yuandong Zhang ◽  
...  

2021 ◽  
Author(s):  
Tingwan Yang ◽  
Hongyan Zhao ◽  
Zhengyu Xia ◽  
Zicheng Yu ◽  
Hongkai Li ◽  
...  

<p>Montane bogs—peat-forming ecosystems located in high elevation and receiving their water supply mostly from meteoric waters—are unique archives of past environmental changes. Studying these ecosystems and their responses to recent climate warming will help improve our understanding of the sensitivity of high-elevation peatlands to regional climate dynamics. Here, we report a post-bomb radiocarbon-dated, high-resolution, and multi-proxy record in Laobaishan bog (LBS), a mountaintop bog from the Changbai Mountains Range in Northeast China. We analyzed plant macrofossils and testate amoebae of a 41-cm peat core dated between 1970 and 2009 to document the ecohydrological response of peatland to the anthropogenic warming in recent decades. We quantitatively reconstruct the surface wetness changes of LBS bog using the first axis of the detrended correspondence analysis (DCA) of plant macrofossil assemblages and depth to water table (DWT) inferred by transfer function of testate amoebae assemblages. We distinguished two hydroclimate stages: the moist stage before the 1990s and the rapidly drying stage since the 1990s. During the moist stage, plant macrofossils were characterized by the low abundance of <em>Sphagnum capitifolium</em> and <em>Polytrichum strichum</em> that prefer dry habitats, and testate amoebae assemblages were dominated by low abundance of dry-adapted <em>Assulina muscorum</em> and <em>Corythion dubium</em>. High score of first axis and low DWT also suggested a moist habitat at LBS. After the transition into the drying stage, the abundance of <em>S. capitifolium</em> and <em>P. strichum</em> increased and that of <em>A. muscorum</em> and <em>C. dubium</em> showed similar trend. Score of first axis and DWT reconstructions show that LBS have experienced rapid surface desiccation since the 1990s. Based on the high-resolution gridded reanalysis data, these ecohydrological changes occurred with a rapid increase in temperature (~1°C) but without notable change in total precipitation during the growing season (May–September) since the 1990s. Besides, backward trajectory analysis showed no apparent changes in atmospheric circulation pattern since the 1990s, supporting our interpretation that the ecohydrological changes in LBS bog were induced by climate warming. These results demonstrate that the plant communities, microbial assemblages, and peatland hydrology of montane peatland show a sensitive response to climate warming that might be in larger amplitude than the low-elevation areas.</p>


2003 ◽  
Vol 37 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Jingshi Liu ◽  
Norio Hayakawa ◽  
Mingjiao Lu ◽  
Shuhua Dong ◽  
Jinyong Yuan

Sign in / Sign up

Export Citation Format

Share Document