scholarly journals Regional age differences in gray matter diffusivity among healthy older adults

2015 ◽  
Vol 10 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Lauren E. Salminen ◽  
Thomas E. Conturo ◽  
David H. Laidlaw ◽  
Ryan P. Cabeen ◽  
Erbil Akbudak ◽  
...  
2018 ◽  
Vol 65 ◽  
pp. 158-167 ◽  
Author(s):  
Lucy V. Hiscox ◽  
Curtis L. Johnson ◽  
Matthew D.J. McGarry ◽  
Michael Perrins ◽  
Aimee Littlejohn ◽  
...  

2019 ◽  
Author(s):  
Christopher McCrum ◽  
Kiros Karamanidis ◽  
Lotte Grevendonk ◽  
Wiebren Zijlstra ◽  
Kenneth Meijer

AbstractThe ability to rapidly adjust gait to cope with unexpected mechanical perturbations declines with ageing. Previous studies however, have not ensured that pre-perturbation gait stability was equivalent, meaning that differences in unperturbed gait stability may have influenced the outcomes, which this study addresses. We also examine if interlimb transfer of gait adaptations are observed in healthy older adults, potentially driven by the increased motor error experienced due to their reduced ability to cope with the perturbations. 30 young and 28 older healthy adults experienced ten unpredictable treadmill belt accelerations (the first and last applied to the right leg, the others to the left) during walking at their stability-normalised walking speeds (young: 1.32±0.07m/s; older: 1.31±0.13m/s). Using kinematic data, we assessed the margins of stability during unperturbed walking and the first eight post-perturbation recovery steps. Older adults required three more steps to recover during the first perturbation to each leg than the young adults. Yet, after repeated perturbations of the left leg, older adults required only one more step to recover. Interestingly, for the untrained right leg, we found an improvement of three steps in the recovery of the older adults, indicating interlimb transfer of the improvements. Age differences in reactive gait stability remain even when participants’ walk with equivalent stability. Furthermore, we show that healthy older adults can transfer improvements in balance recovery made during repeated perturbations to one limb to their recovery following a perturbation to the untrained limb.


2021 ◽  
Vol 13 ◽  
Author(s):  
Hollis C. Karoly ◽  
Carillon J. Skrzynski ◽  
Erin Moe ◽  
Angela D. Bryan ◽  
Kent E. Hutchison

Background: Exploring biological variables that may serve as indicators of the development and progression of cognitive decline is currently a high-priority research area. Recent studies have demonstrated that during normal aging, individuals experience increased inflammation throughout the brain and body, which may be linked to cognitive impairment and reduced gray matter volume in the brain. Neurofilament light polypeptide (NfL), which is released into the circulation following neuronal damage, has been proposed as a biomarker for neurodegenerative diseases, and may also have utility in the context of normal aging. The present study tested associations between age, peripheral levels of the pro-inflammatory cytokine IL-6, peripheral NfL, brain volume, and cognitive performance in a sample of healthy adults over 60 years old.Methods: Of the 273 individuals who participated in this study, 173 had useable neuroimaging data, a subset of whom had useable blood data (used for quantifying IL-6 and NfL) and completed a cognitive task. Gray matter (GM) thickness values were extracted from brain areas of interest using Freesurfer. Regression models were used to test relationships between IL-6, NfL, GM, and cognitive performance. To test putative functional relationships between these variables, exploratory path analytic models were estimated, in which the relationship between age, IL-6, and working memory performance were linked via four different operationalizations of brain health: (1) a latent GM variable composed of several regions linked to cognitive impairment, (2) NfL alone, (3) NfL combined with the GM latent variable, and (4) the hippocampus alone.Results: Regression models showed that IL-6 and NfL were significantly negatively associated with GM volume and that GM was positively associated with cognitive performance. The path analytic models indicated that age and cognitive performance are linked by GM in the hippocampus as well as several other regions previously associated with cognitive impairment, but not by NfL alone. Peripheral IL-6 was not associated with age in any of the path models.Conclusions: Results suggest that among healthy older adults, there are several GM regions that link age and cognitive performance. Notably, NfL alone is not a sufficient marker of brain changes associated with aging, inflammation, and cognitive performance.


2010 ◽  
Vol 16 (4) ◽  
pp. 640-650 ◽  
Author(s):  
JUDY PA ◽  
KATHERINE L. POSSIN ◽  
STEPHEN M. WILSON ◽  
LOVINGLY C. QUITANIA ◽  
JOEL H. KRAMER ◽  
...  

AbstractThere is increasing recognition that set-shifting, a form of cognitive control, is mediated by different neural structures. However, these regions have not yet been carefully identified as many studies do not account for the influence of component processes (e.g., motor speed). We investigated gray matter correlates of set-shifting while controlling for component processes. Using the Design Fluency (DF), Trail Making Test (TMT), and Color Word Interference (CWI) subtests from the Delis-Kaplan Executive Function System (D-KEFS), we investigated the correlation between set-shifting performance and gray matter volume in 160 subjects with neurodegenerative disease, mild cognitive impairment, and healthy older adults using voxel-based morphometry. All three set-shifting tasks correlated with multiple, widespread gray matter regions. After controlling for the component processes, set-shifting performance correlated with focal regions in prefrontal and posterior parietal cortices. We also identified bilateral prefrontal cortex and the right posterior parietal lobe as common sites for set-shifting across the three tasks. There was a high degree of multicollinearity between the set-shifting conditions and the component processes of TMT and CWI, suggesting DF may better isolate set-shifting regions. Overall, these findings highlight the neuroanatomical correlates of set-shifting and the importance of controlling for component processes when investigating complex cognitive tasks. (JINS, 2010, 16, 640–650.)


2013 ◽  
Vol 27 (2) ◽  
pp. 293-295 ◽  
Author(s):  
Olivier Beauchet ◽  
Cédric Annweiler ◽  
Sébastien Celle ◽  
Robert Bartha ◽  
Jean-Claude Barthélémy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document