Optimization of phenolic compounds recovery and antioxidant activity evaluation from Opuntia ficus indica using response surface methodology

Author(s):  
Walid Zeghbib ◽  
Fares Boudjouan ◽  
Mostapha Bachir-bey
Author(s):  
Cristiane de Moura, Amália Soares dos Reis ◽  
Letícia Dangui da Silva, Vanderlei Aparecido de Lima ◽  
Tatiane Luiza Cadorin Oldoni ◽  
Celeide Pereira ◽  
Solange Teresinha Carpes

The aim of this study was to determine the best extraction conditions of phenolic compounds present in açaí, blueberry and goji berry fruits using the response surface methodology (RSM). The phenolic compounds profile by high-performance liquid chromatography, antioxidant activity was also determined. A factorial 23 design was used to analyze the effect of the solvent (ethanol and water), time (30 and 60 min) and temperature (30 °C and 60 °C) on the extraction of total phenolic compounds (TPC) and activity antioxidant (AA). The variables time and temperature had a positive effect on antioxidant activity (AA) in their highest levels, 60 min and 60 °C, respectively. The solvent ethanol 800 g/mL was more efficient in TPC extracting with AA in all matrices. Rutin was present in high amounts in blueberry and goji berry, and the myricetin in açaí. The açaí showed higher in vitro antioxidant activity when extracted at 60 °C for 60 min. The high correlation coefficient (0.98) of global response (GR) showed that we can find out single and global response in research with multiple dependent variables.  The GR analysis indicated the highest values of the TPC and AA when the fruits were extracted at 60°C for 60 min using ethanol as solvent and it was very useful for simplifying and improving the phenolic compounds extraction performance.


Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2095-2102
Author(s):  
O. Herrera-Calderon ◽  
R. Vega

Waltheria ovata is a medicinal plant belonging to the Sterculiaceae genus. Natural products of Waltheria ovata could be used in the food industry as natural antioxidants due to its high content of polyphenols according to the literature. The main objective in this research was to optimize the extraction of phenolic compounds and the antioxidant activity from Waltheria ovata roots using response surface methodology (RSM). The total phenolic content in different extracts was determined by spectrophotometric method (Folin-Ciocalteu reagent) and the antioxidant activity by using DPPH assay. To optimize the conditions for total phenolic content and antioxidant activity were used three independent variables: solvent/sample ratio (1:10, 1:20 and 1:30 g/mL), temperature (40, 50, and 60°C) and time (40, 50 and 60 mins). The results showed that total phenolic content and antioxidant activity in the experiments ranged from 8.7 to 12.1 mg GAE/g and 76.1% to 96.7%, respectively. The coefficients of determination (R2 values) for phenolic content and antioxidant activity were 0.86 and 0.91, respectively. Under the optimum conditions of 1:20 g/mL, 60°C and 55 mins of extraction, the values for total phenolic content and antioxidant activity were 0.448±0.02 mg GAE/g and 87.00±2.0%, respectively. These data showed that the experimental responses were reasonably close to the predicted responses (0.444 mg GAE/g and 84.67%). Therefore, the results showed that Waltheria ovata can be used as antioxidant in foods.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Alexander Weremfo ◽  
Felix Adulley ◽  
Martin Adarkwah-Yiadom

This study was designed to optimize three microwave-assisted extraction (MAE) parameters (ethanol concentration, microwave power, and extraction time) of total phenolics, total flavonoids, and antioxidant activity of avocado seeds using response surface methodology (RSM). The predicted quadratic models were highly significant (p<0.001) for the responses studied. The extraction of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was significantly (p<0.05) influenced by both microwave power and extraction time. The optimal conditions for simultaneous extraction of phenolic compounds and antioxidant activity were ethanol concentration of 58.3% (v/v), microwave power of 400 W, and extraction time of 4.8 min. Under these conditions, the experimental results agreed with the predicted values. MAE revealed clear advantages over the conventional solvent extraction (CSE) in terms of high extraction efficiency and antioxidant activity within the shortest extraction time. Furthermore, high-performance liquid chromatography (HPLC) analysis of optimized extract revealed the presence of 10 phenolic compounds, with rutin, catechin, and syringic acid being the dominant compounds. Consequently, this optimized MAE method has demonstrated a potential application for efficient extraction of polyphenolic antioxidants from avocado seeds in the nutraceutical industries.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Zhao ◽  
Yingying Hou ◽  
Guosheng Tang ◽  
Enbo Cai ◽  
Shuangli Liu ◽  
...  

The ultrasound-assisted extraction of phenolic compounds fromEpimedium brevicornuMaxim was modeled using response surface methodology. A Central Composite Design (CCD) was employed to optimize three extraction variables, including ethanol concentration (X1), extraction time (X2), and ratio of aqueous ethanol to raw material (X3), for the achievement of high extraction yield of the phenolic compounds. The optimized conditions areX1of 50% (v/v),X2of 27.5 min, andX3of 250 mL/g. Under these conditions, the experimental yield is 4.29 ± 0.033%(n=3). The antioxidant activity was evaluated using the DPPH assay and ferric-reducing antioxidant power (FRAP). And it indicates that the phenolic compounds fromEpimedium brevicornuMaxim possess significant antioxidant activity. HPLC analysis reveals that the main phenolic compound in the extract product was identified as gallic acid, catechin (Cianidanol), p-hydroxybenzoic acid, vanillic acid, caffeic acid, ferulaic acid, rutin, benzoic acid, and quercetin.


Sign in / Sign up

Export Citation Format

Share Document