capacitance effects
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leilei Qiao ◽  
Cheng Song ◽  
Yiming Sun ◽  
Muhammad Umer Fayaz ◽  
Tianqi Lu ◽  
...  

AbstractNegative capacitance effect in ferroelectric materials provides a solution to the energy dissipation problem induced by Boltzmann distribution of electrons in conventional electronics. Here, we discover that besides ferroelectrics, the antiferroelectrics based on Landau switches also have intrinsic negative capacitance effect. We report both the static and transient negative capacitance effect in antiferroelectric PbZrO3 films and reveal its possible physical origin. The capacitance of the capacitor of the PbZrO3 and paraelectric heterostructure is demonstrated to be larger than that of the isolated paraelectric capacitor at room temperature, indicating the existence of the static negative capacitance. The opposite variation trends of the voltage and charge transients in a circuit of the PbZrO3 capacitor in series with an external resistor demonstrate the existence of transient negative capacitance effect. Strikingly, four negative capacitance effects are observed in the antiferroelectric system during one cycle scan of voltage pulses, different from the ferroelectric counterpart with two negative capacitance effects. The polarization vector mapping, electric field and free energy analysis reveal the rich local regions of negative capacitance effect with the negative dP/dE and (δ2G)⁄(δD2), producing stronger negative capacitance effect. The observation of negative capacitance effect in antiferroelectric films significantly extends the range of its potential application and reduces the power dissipation further.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1297
Author(s):  
Matthieu Pettes Duler ◽  
Xavier Roboam ◽  
Bruno Sareni ◽  
Yvan Lefevre ◽  
Jean-François Llibre ◽  
...  

In the context of hybrid electric and full electric powertrains for future less-pollutant aircrafts, this paper focuses on the multidisciplinary design optimization (MDO) of the actuation system, including a surface-mounted PMSM in order to maximize the power density of the device: this study is a preliminary approach before integrating the whole powertrain. After an introduction of the MDO context, the analytical model of the electric motor is detailed. It integrates multi-physical aspects (electric, magnetic, mechanical, thermal, partial discharges and insulation, control and flight mission) and takes several heterogeneous design constraints into account. The optimization method involves a genetic algorithm allowing the reduction of the actuation weight with regard to a wide set of constraints. The results show the crucial sensitivity of the electro-thermal coupling, especially the importance of transient modes during flight sequences due to thermal capacitance effects. Another major point is related to the performance of the thermal cooling, which requires the introduction of an “internal cooling” in the stator slots in addition to the “base cooling” for stator and rotor. Gathering these analyses, the MDO leads to high power density actuators beyond 15 kW/kg with high-voltage–high-speed solutions, satisfying all design constraints (insulation, thermal, magnet demagnetization) over the flight mission.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3086
Author(s):  
Bo You ◽  
Yuandong Yue ◽  
Mingxiao Sun ◽  
Jiayu Li ◽  
Deli Jia

Salinity is an important index of water quality in oilfield water injection engineering. To address the need for real-time measurement of salinity in water flooding solutions during oilfield water injection, a salinity measurement system that can withstand a high temperature environment was designed. In terms of the polarization and capacitance effects, the system uses an integrator circuit to collect information and fuzzy control to switch gears to expand the range. Experimental results show that the system can operate stably in a high-temperature environment, with an accuracy of 0.6% and an uncertainty of 0.2% in the measurement range of 1–10 g/L.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 320
Author(s):  
Taewoo Lee ◽  
Sung-Yong Park

We present experimental studies of alternating current (AC) electrowetting dominantly influenced by several unique characteristics of an ion gel dielectric in its capacitance. At a high-frequency region above 1 kHz, the droplet undergoes the contact angle modification. Due to its high-capacitance characteristic, the ion gel allows the contact angle change as large as Δθ = 26.4°, more than 2-fold improvement, compared to conventional dielectrics when f = 1 kHz. At the frequency range from 1 to 15 kHz, the capacitive response of the gel layer dominates and results in a nominal variation in the angle change as θ ≈ 90.9°. Above 15 kHz, such a capacitive response of the gel layer sharply decreases and leads to the drastic increase in the contact angle. At a low-frequency region below a few hundred Hz, the droplet’s oscillation relying on the AC frequency applied was mainly observed and oscillation performance was maximized at corresponding resonance frequencies. With the high-capacitance feature, the ion gel significantly enlarges the oscillation performance by 73.8% at the 1st resonance mode. The study herein on the ion gel dielectric will help for various AC electrowetting applications with the benefits of mixing enhancement, large contact angle modification, and frequency-independent control.


2020 ◽  
Vol 174 ◽  
pp. 107914
Author(s):  
Dipjyoti Das ◽  
Taeho Kim ◽  
Venkateswarlu Gaddam ◽  
Changhwan Shin ◽  
Sanghun Jeon

ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 112
Author(s):  
Anisah Muthi’ah ◽  
Amien Rahardjo ◽  
Faiz Husnayain ◽  
Chairul Hudaya

Purification water has several methods; one of them is the plasma generation. The circuit used to generate plasma is Zero Voltage Switching (ZVS), where its use uses the resonance circuit concept. The main category to generate plasma glow discharge is the circuit should generate high voltage output with a current range from 10-6 A to 1 A. In this study, when ZVS connected to the flyback converter with an input voltage of 12 V, the output values of 11 kV and 11 μA were obtained. In comparison, if ZVS was not connected to the flyback converter, the circuit is less stable, and the output value is weak because the output values only reach 8.97 kV and 8.97 μA. For maximum output, the ZVS circuit should be connected to the converter circuit due to the flyback converter can repair and strengthen the voltage. The flyback converter circuit is affected by the diode and capacitance effects. The effect of using capacitors in a flyback converter circuit is when the capacitance is too low, the ripple will form. Then when capacitance reaches a specific value, the ripple will decrease, and the voltage graph will approach a straight line. Hence the use of components in the ZVS and the flyback converter need to be considered because it affects how the release of plasma glow discharge will form.


Sign in / Sign up

Export Citation Format

Share Document