An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution

2019 ◽  
Vol 13 (4) ◽  
pp. 375-381
Author(s):  
Wei Sun ◽  
Rui Zhao ◽  
Tian Wang ◽  
Ke Zhan ◽  
Zheng Yang ◽  
...  
Open Ceramics ◽  
2021 ◽  
Vol 5 ◽  
pp. 100067
Author(s):  
Hassan Nosrati ◽  
Rasoul Sarraf-Mamoory ◽  
Maria Canillas Perez ◽  
Dang Quang Svend Le ◽  
Reza Zolfaghari Emameh ◽  
...  

2018 ◽  
Vol 22 (09n10) ◽  
pp. 877-885 ◽  
Author(s):  
Qiang Luo ◽  
Kun Zhu ◽  
Shi-Zhao Kang ◽  
Lixia Qin ◽  
Sheng Han ◽  
...  

By facilely pre-implanting Co[Formula: see text] ions in the graphene oxide, a novel 5,15-diphenyl-10,20-di(4-pyridyl)porphyrin pillared graphene oxide was fabricated by means of electrostatic interaction and coordination interaction. It was shown that the morphology and the structure of graphene oxide and pyridylporphyrin nanocomposite were modified by introducing Co[Formula: see text] ions on the interface between graphene oxide and pyridylporphyrin. Furthermore, it was found that the photocatalytic hydrogen evolution activity over the Co[Formula: see text] ions implanted in the graphene oxide and pyridylporphyrin nanocomposite was evidently higher than in the graphene oxide and pyridylporphyrin nanocomposite without Co[Formula: see text]. This confirmed that strong interaction and efficient electron transfer between pyridylporphyrin and graphene oxide are the important reasons for the enhanced photocatalytic activity for hydrogen evolution. Subsequently, this technique will be a simple and efficient approach to optimize the transfer pathway of photogenerated electrons and to improve photocatalytic performance by implanting metal ions in the interface of nanocomposites.


Crystals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Aleksandra Pacanowska ◽  
Mateusz Reczyński ◽  
Beata Nowicka

The 1D {[CuII(cyclam)]3[WV(CN)8]2.5H2O}n (1·5H2O) (cyclam = 1,4,8,11-tetraazacyclotetradecane) coordination polymer of ladder topology can be obtained in water-alcohol solution from [Cu(cyclam)]2+ and [W(CN)8]3− building blocks. Upon dehydration, 1·5H2O undergoes a single-crystal-to-single-crystal structural transformation to the anhydrous {[CuII(cyclam)]3[WV(CN)8]2}n (1) form, which retains the same topology, but is characterized by shorter Cu-W distances and significantly more bent CN-bridges. The deformation of the coordination skeleton is reflected in magnetic properties: the predominant intra-chain interactions change from ferromagnetic in 1·5H2O to antiferromagnetic in 1. The reaction between the same building blocks in water solution under slow diffusion conditions leads to the formation of a 0D {[CuII(cyclam)(H2O)]2[CuII(cyclam)][WV(CN)8]2}.3H2O pentanuclear assembly (2·3H2O).


2020 ◽  
Vol 8 ◽  
Author(s):  
Hailong Zhang ◽  
Jianbo Yang ◽  
Ting Li ◽  
Xingxiang Ji ◽  
Zhen Xu ◽  
...  

Separation of water/alcohol miscible mixtures via direct filtration only under gravity is a great challenge. Here, different alkyl chain grafted-reduced graphene oxide (alkyl-RGO) is synthesized and characterized. The hydrophobic alkyl chains can considerably modify the oil-wettability of the membranes and avoid water permeation. The alkyl-RGO membrane obtained by vacuum filtration can separate water/oil immiscible mixtures. Importantly, water/alcohol miscible mixtures could also be separated solely under gravity, where alcohols efficiently permeate the alkyl-RGO membrane while water is prevented through the membrane. The separation efficiency of C12H-RGO membrane reaches up to about 0.04 vol% of water content for the case of separating an n-propanol/water (90:10 v/v) mixture with high n-propanol permeability of approx. 685 mL m−2 h−1. Molecular simulations indicate that the selective absorption ability and diffusion rate also affect water/alcohol separation. The alkyl-RGO membranes via gravity driven filtration can extend the applications of separation of water/alcohol miscible mixtures.


Metals ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 213 ◽  
Author(s):  
Biao Chen ◽  
Katsuyoshi Kondoh

Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Heléne Almlöf ◽  
Bjørn Kreutz ◽  
Kristina Jardeby ◽  
Ulf Germgård

Abstract Carboxymethyl cellulose (CMC) is produced commercially in a two stage process consisting of a mercerization stage in which the pulp is treated with alkali in a water alcohol solution and a second etherification stage whereby monochloro-acetic acid is added to the pulp slurry. In this study, the influence of the conditions of an extended mercerization stage was evaluated on the etherification stage concerning the degree of substitution (DS) and the filterability of the resulting CMC. The parameters studied were: (1) the ratio of cellulose I and cellulose II in the original pulp, (2) the concentration of alkali, (3) the temperature and (4) the retention time in the mercerization stage. The DS results indicate that the NaOH concentration in the mercerization stage is the most important among the parameters studied. When the NaOH concentration in the mercerization stage was high (27.5%), cellulose II showed a lower reactivity than cellulose I with respect to the DS obtained in the resulting CMC. The results from the filtration ability of CMC water solutions are interpreted that the amount of cellulose II in the original pulp and the temperature has a negative influence, while the NaOH concentration in the mercerization stage has a positive influence on the filtration ability. Retention time between 1 h–48 h in the mercerization stage had no effect on the DS or the filtration value. The filtration ability was assumed to be highly influenced by the presence of poorly reacted cellulose segments. The CMC samples with the lowest filtration ability at a given DS can be assumed to have the highest degree of unevenly substituted segments.


Sign in / Sign up

Export Citation Format

Share Document