scholarly journals Sintering Behaviors of Carbon Nanotubes—Aluminum Composite Powders

Metals ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 213 ◽  
Author(s):  
Biao Chen ◽  
Katsuyoshi Kondoh
Author(s):  
Artem V. Alekseev ◽  
Maxim A. Esikov ◽  
Vyacheslav I. Mali ◽  
Alexander A. Khassin ◽  
Michael R. Predtechenskiy

Composite material with aluminum matrix reinforced by carbon nanotubes (CNT) and oxide nanofibers (NF) was made by powder metallurgy method. Powder mixtures were made by low energy milling on drum ball mill. Composite samples were manufactured by spark plasma sintering system. Microstructure analysis showed agglomeration of CNT and NF in composite materials. Correlation between flexural strength and unit mass of composites was revealed. Nevertheless, the use of low energy milling allows minimizing the damage of carbon nanotubes and oxide nanofibers during the preparation of mixtures. From this point of view it is suitable for making composites with high elastic modulus. It was shown that addition of 5-12%wt of CNT can increase flexural modulus by 30-189%. Also was shown that addition of 5%wt of oxide nanofibers increase flexural modulus by 78%


2021 ◽  
Vol 1016 ◽  
pp. 1703-1709
Author(s):  
Minjae Yu ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

Cold spray (CS) is a solid-state deposition technique of micron-sized metallic powder in an ultra-high velocity gas using a de Laval nozzle. CS is a unique deposition technique due to its use of relatively lower gas temperatures in comparison to other thermal processes. Consequently, high-temperature oxidation and phase transformations of deposited powders are largely restricted while the operating cost of CS is much lower than that of other thermal processes. Generally, the low pressure cold spray (LPCS) technique is used for the deposition of metallic powders on metallic substrates, while only a few studies of metallic particle deposition on ceramic substrates have been conducted, and it was found that the deposition of metallic powders on ceramic substrates was quite difficult. In this study, improved LPCS deposition of copper coatings on zirconia substrates was investigated. It is known that deposition of a metallic powder on a ceramic substrate is difficult due to the differences in material bonding and several properties of the two materials. These difficulties in LPCS deposition were solved using three different approaches, namely 1) use of copper and aluminum composite powders and 2) laser pre-treatment and 3) laser texturing of zirconia substrates. It was found that pure copper powder coatings on the as-received and various treated substrates were delaminated in the interface as expected. However, the deposition was improved for all substrates by using the copper and aluminum composite powder. While the laser pre-treated substrate was not effective for the deposition of the copper and aluminum composite powder, thick coatings were obtained for the deposition on the laser pre-treated with heat treatment substrate and the laser-textured substrate.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000125-000130
Author(s):  
Bartosz Hekner ◽  
Jerzy Myalski

This paper presents an influence of reinforcement and additions types on tribological properties for composite materials produced for potential application in high loaded friction point. The influence of carbon nanotubes or amorphous form of carbon on tribological properties was subject of authors' interest. A technology of materials manufacturing based on preparation of composite powders using high energy ball milling, with subsequent hot pressing in the semi-liquid phase. All materials based on an aluminum alloys, with silicon carbide (SiC) or silicon nitride particles (Si3N4) applied as a reinforcement. As a additions 1 wt.% of multiwalled carbon nanotubes (CNT) or 5 wt.% of glassy carbon particles (GCp) were used. A proper parameters selection (speed, powder to ball ratio, time ect.) of high energy milling led to fragmentation of ceramic particles up to nano- or submicro scale with desirable homogenization in whole volume of solid material. Due to partially crushed of glassy carbon particles, their size was between 2 – 200 μm. However GCp revealed also proper distribution in volume of composite. Moreover, the good quality of bonding between matrix and reinforcement particles were achieved due to high energy during milling. For manufactured materials a rating of tribological properties (coefficient of friction, wear rate, ect.) at ambient and high temperature were made. The research confirmed that, due to desirable coefficient of friction (COF) value and low mass loss, manufactured materials can be applied in automotive industry, eg. for brake pads. A high stability of COF on desirable value (0.5 – 0.8) was observed up to temperature higher than 500 °C. The application of carbon additions resulted in increasing of friction properties. The material with silicon nitride as a reinforcement and glassy carbon particles addition revealed the best friction properties between analysed materials.


2013 ◽  
Vol 275-277 ◽  
pp. 1789-1793 ◽  
Author(s):  
Long Shan Xu ◽  
Xiao Hua Chen ◽  
Xing Jun Liu

Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were prepared using a unique spherical MWCNT-implanted copper composite powders. The MWCNTs are homogenously ‘locked’ in the composite and tightly bonded to the matrix, which makes them play excellent reinforcement role on the microhardness compared with the unreinforced pure copper. Although the thermal conductivity is not enhanced for the thermal resistance between the carbon nanotubes and the copper matrix; it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the thermal expansion of the composites decreased apparently with the addition of the carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document