Data driven models for compressive strength prediction of concrete at high temperatures

2020 ◽  
Vol 14 (2) ◽  
pp. 311-321
Author(s):  
Mahmood Akbari ◽  
Vahid Jafari Deligani
Alloy Digest ◽  
1964 ◽  
Vol 13 (7) ◽  

Abstract Kentanium K138-A is a high temperature titanium carbide that greatly widens the scope of the engineering design where conditions of intermittent or continuous high temperatures in oxidizing atmospheres are combined with abrasion, and compressive or tensile loads. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness, creep, and fatigue. It also includes information on machining and joining. Filing Code: Ti-40. Producer or source: Kennametal Inc..


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4095
Author(s):  
Qing Chen ◽  
Zhiyuan Zhu ◽  
Rui Ma ◽  
Zhengwu Jiang ◽  
Yao Zhang ◽  
...  

In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.


2016 ◽  
Vol 31 (3) ◽  
pp. 590-593
Author(s):  
Zhen Gong ◽  
Yimin Zhang ◽  
Youjian Hu ◽  
Yan Yu ◽  
Yanbin Yuan ◽  
...  

2019 ◽  
Vol 210 ◽  
pp. 509-517 ◽  
Author(s):  
Rizwan S. Choudhry ◽  
Andrew T. Rhead ◽  
Mark W.D. Nielsen ◽  
Richard Butler

Sign in / Sign up

Export Citation Format

Share Document