Simulation of foamed concrete compressive strength prediction using adaptive neuro-fuzzy inference system optimized by nature-inspired algorithms

Author(s):  
Ahmad Sharafati ◽  
H. Naderpour ◽  
Sinan Q. Salih ◽  
E. Onyari ◽  
Zaher Mundher Yaseen
2011 ◽  
Vol 243-249 ◽  
pp. 6121-6126 ◽  
Author(s):  
Jing Xu ◽  
Xiu Li Wang

The purpose of this paper is to develop the Ⅰ-PreConS (Intelligent PREdiction system of CONcrete Strength) that predicts the compressive strength of concrete to improve the accuracy of concrete undamaged inspection. For this purpose, the system is developed with adaptive neuro-fuzzy inference system (ANFIS) that can learn cube test results as training patterns. ANFIS does not need a specific equation form differ from traditional prediction models. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. In the study, adaptive neuro-fuzzy inference system (ANFIS) based on Takagi-Sugeno rules is built up to prediction concrete strength. According to the expert experience, the relationship between the rebound value and concrete strength tends to power function. So the common logarithms of rebound value and strength value are used as the inputs and outputs of the ANFIS. System parameter sets are iteratively adjusted according to input and output data samples by a hybrid-learning algorithm. In the system, in order to improve of the ANFIS, condition parameter sets can be determined by the back propagation gradient descent method and conclusion parameter sets can be determined by the least squares method. As a result, the concrete strength can be inferred by the fuzzy inference. The method takes full advantage of the characteristics of the abilities of Fuzzy Neural Networks (FNN) including automatic learning, generation and fuzzy logic inference. The experiment shows that the average relative error of the predicted results is 10.316% and relative standard error is 12.895% over all the 508 samples, which are satisfied with the requirements of practical engineering. The ANFIS-based model is very efficient for prediction the compressive strength of in-service concrete.


Author(s):  
Mostafa Jalal ◽  
Poura Arabali ◽  
Zachary Grasley ◽  
Jeffrey W Bullard

Rubberized concrete containing waste tire rubber, silica fume, and zeolite cured in different curing conditions has been investigated in this paper. For this purpose, coarse aggregates were partially replaced by different percentages of waste rubber chips, namely 10% and 15%, and silica fume and zeolite were incorporated into the binder to replace 10% of cement mass. Different mixes were made and cured in two different conditions, namely in water and air with relative humidity of 100% and 50%, respectively. Compressive strengths of mixes were measured at different ages as 3, 7, 28, and 42 days. In order to simulate and predict the compressive strength of the rubberized cement composite, the influencing parameters were considered as cement content, silica fume, zeolite, rubber percentage, relative humidity, and age of the samples. Then, adaptive neuro-fuzzy inference system was employed to develop a prediction model for compressive strength of the concrete. Six variables were introduced into the adaptive neuro-fuzzy inference system model as inputs and the compressive strength was considered as the output. Prediction results and performance criteria were determined for various datasets including training, validation, testing, and all data. Parametric study of the adaptive neuro-fuzzy inference system models was also conducted to investigate the effect of each variable on the compressive strength of the rubberized concrete. Based on the correlations and errors obtained from the model, it was found that the proposed adaptive neuro-fuzzy inference system model can be a robust tool for predicting the behavior of complex composite materials such as rubberized concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shivali Chopra ◽  
Gaurav Dhiman ◽  
Ashutosh Sharma ◽  
Mohammad Shabaz ◽  
Pratyush Shukla ◽  
...  

Adaptive Neuro-Fuzzy Inference System (ANFIS) blends advantages of both Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) in a single framework. It provides accelerated learning capacity and adaptive interpretation capabilities to model complex patterns and apprehends nonlinear relationships. ANFIS has been applied and practiced in various domains and provided solutions to commonly recurring problems with improved time and space complexity. Standard ANFIS has certain limitations such as high computational expense, loss of interpretability in larger inputs, curse of dimensionality, and selection of appropriate membership functions. This paper summarizes that the standard ANFIS is unsuitable for complex human tasks that require precise handling of machines and systems. The state-of-the-art and practice research questions have been discussed, which primarily focus on the applicability of ANFIS in the diversifying field of engineering sciences. We conclude that the standard ANFIS architecture is vastly improved when amalgamated with metaheuristic techniques and further moderated with nature-inspired algorithms through calibration and tuning of parameters. It is significant in adapting and automating complex engineering tasks that currently depend on human discretion, prominent in the mechanical, electrical, and geological fields.


Sign in / Sign up

Export Citation Format

Share Document