scholarly journals An adaptive neuro fuzzy inference system to model the uniaxial compressive strength of cemented hydraulic backfill

2018 ◽  
Vol 12 (2) ◽  
pp. 1-12 ◽  
Author(s):  
H Basarir ◽  
◽  
H Bin ◽  
A Fourie ◽  
A Karrech ◽  
...  
2011 ◽  
Vol 243-249 ◽  
pp. 6121-6126 ◽  
Author(s):  
Jing Xu ◽  
Xiu Li Wang

The purpose of this paper is to develop the Ⅰ-PreConS (Intelligent PREdiction system of CONcrete Strength) that predicts the compressive strength of concrete to improve the accuracy of concrete undamaged inspection. For this purpose, the system is developed with adaptive neuro-fuzzy inference system (ANFIS) that can learn cube test results as training patterns. ANFIS does not need a specific equation form differ from traditional prediction models. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. In the study, adaptive neuro-fuzzy inference system (ANFIS) based on Takagi-Sugeno rules is built up to prediction concrete strength. According to the expert experience, the relationship between the rebound value and concrete strength tends to power function. So the common logarithms of rebound value and strength value are used as the inputs and outputs of the ANFIS. System parameter sets are iteratively adjusted according to input and output data samples by a hybrid-learning algorithm. In the system, in order to improve of the ANFIS, condition parameter sets can be determined by the back propagation gradient descent method and conclusion parameter sets can be determined by the least squares method. As a result, the concrete strength can be inferred by the fuzzy inference. The method takes full advantage of the characteristics of the abilities of Fuzzy Neural Networks (FNN) including automatic learning, generation and fuzzy logic inference. The experiment shows that the average relative error of the predicted results is 10.316% and relative standard error is 12.895% over all the 508 samples, which are satisfied with the requirements of practical engineering. The ANFIS-based model is very efficient for prediction the compressive strength of in-service concrete.


Author(s):  
Mostafa Jalal ◽  
Poura Arabali ◽  
Zachary Grasley ◽  
Jeffrey W Bullard

Rubberized concrete containing waste tire rubber, silica fume, and zeolite cured in different curing conditions has been investigated in this paper. For this purpose, coarse aggregates were partially replaced by different percentages of waste rubber chips, namely 10% and 15%, and silica fume and zeolite were incorporated into the binder to replace 10% of cement mass. Different mixes were made and cured in two different conditions, namely in water and air with relative humidity of 100% and 50%, respectively. Compressive strengths of mixes were measured at different ages as 3, 7, 28, and 42 days. In order to simulate and predict the compressive strength of the rubberized cement composite, the influencing parameters were considered as cement content, silica fume, zeolite, rubber percentage, relative humidity, and age of the samples. Then, adaptive neuro-fuzzy inference system was employed to develop a prediction model for compressive strength of the concrete. Six variables were introduced into the adaptive neuro-fuzzy inference system model as inputs and the compressive strength was considered as the output. Prediction results and performance criteria were determined for various datasets including training, validation, testing, and all data. Parametric study of the adaptive neuro-fuzzy inference system models was also conducted to investigate the effect of each variable on the compressive strength of the rubberized concrete. Based on the correlations and errors obtained from the model, it was found that the proposed adaptive neuro-fuzzy inference system model can be a robust tool for predicting the behavior of complex composite materials such as rubberized concrete.


Author(s):  
Naser Mahdiabadi ◽  
Gholamreza Khanlari

The uniaxial compressive strength (UCS) and modulus of elasticity (E) are two important rock geomechanical parameters that are widely used in rock engineering projects such as tunnels, dams, and rock slope stability. Since the acquisition of high-quality core samples is not always possible, researchers often indirectly estimate these parameters. In the present study, prediction of UCS and E was investigated in calcareous mudstones of Aghajari Formation using multiple linear regression (MLR), multiple nonlinear regression (MNLR), artificial neural networks (ANN), and adaptive neuro-fuzzy ınference system (ANFIS). For this purpose, 80 samples from calcareous mudstones were subjected to the point loading, block punch, and cylinder punch tests. The performance of developed models was assessed based on determination coefficients (R2), mean absolute percentage error (MAPE), and variance accounted for (VAF) indices. The comparison of the obtained results revealed that, among the studied methods, ANFIS is the most suitable one for predicting UCS and E. Moreover, the results showed that ANN and MLNR respectively predict UCS and E better than MLR and a meaningful relationship between the observed and estimated UCS values in all regressions.


2020 ◽  
Vol 10 (10) ◽  
pp. 3475
Author(s):  
Hae-Chang Cho ◽  
Seung-Ho Choi ◽  
Sun-Jin Han ◽  
Sang-Hoon Lee ◽  
Heung-Youl Kim ◽  
...  

In the current design codes, the effective compressive strength can be used to reflect decrease in load-transfer performance when upper/lower columns and slabs have different concrete compressive strengths. In this regard, this study proposed a method that can accurately estimate the effective compressive strengths by using an adaptive neuro-fuzzy inference system (ANFIS). The ANFIS is an algorithm that introduces a learning system that corrects errors into a fuzzy theory and has widely been used to solve problems with complex mechanisms. In order to constitute the ANFIS algorithm, 50 data randomly extracted from 75 existing test datasets were used in training, and 25 were used for verification. It was found that analysis using the ANFIS model provides a more accurate evaluation of the effective compressive strengths of corner and edge columns than do the equations specified in the current design codes. In addition, parametric studies were performed using the ANFIS model, and a simplified equation for calculating the effective compressive strength was proposed, so that it can be easily used in practice.


Sign in / Sign up

Export Citation Format

Share Document