scholarly journals Erratum to: Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China

2010 ◽  
Vol 33 (1) ◽  
pp. 103-103
Author(s):  
Chang-Cheng Liu ◽  
Yu-Guo Liu ◽  
Ke Guo ◽  
Da-Yong Fan ◽  
Li-Fei Yu ◽  
...  
2010 ◽  
Vol 33 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Chang-Cheng Liu ◽  
Yu-Guo Liu ◽  
Ke Guo ◽  
Da-Yong Fan ◽  
Li-Fei Yu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Boguslaw Usowicz ◽  
Mateusz Lukowski ◽  
Jerzy Lipiec

Abstract The assessment of water resources in soil is important in understanding the water cycle in the natural environment and the processes of water exchange between the soil and the atmosphere. The main objective of the study was to assess water resources (in 2010–2013) in the topsoil from satellite (SMOS) and in situ (ground) measurements using the SWEX_PD approach (Soil Water EXtent at Penetration Depth). The SWEX_PD is a result of multiplying soil moisture (SM) and radiation penetration depth (PD) for each pixel derived from the SMOS satellite. The PD, being a manifold of the wavelength λ0 equal to 21 cm, was determined from the weekly SMOS L2 measurement data based on the real and imaginary part of complex dielectric constant. The SWEX_PD data were compared with soil water resources (WR) calculated from the sum of components derived from multiplication of soil moisture (SM) and layer thickness in nine agrometeorological stations located along the eastern border of Poland. Each study site consisted of seven neighbouring Discrete Global Grid pixels (nodes spaced at 15 km) including the central ones with agrometeorological stations. The study area included different types of soils and land covers. The agreement between the water resources obtained from the SWEX_PD and ground measurements (WR) was quantified using classical statistics and Bland–Altman's plots. Calibrated Layer Thickness (CLT = dbias) from 8 to 28 cm was obtained with a low values of bias (close to zero), limits of agreements, and confidence intervals for all the SWEX_PD, depending on the pixel location. The results revealed that the use of the SWEX_PD for assessing soil water resources is the most reliable approach in the study area. Additionally, the data from Bland–Altman plots and the equation proposed in these studies allowed calculation of the Equivalent Layer Thickness (ELT = $$d_{ei}^{SWEX}$$ d ei SWEX ), which corresponds to the water resources derived from the SMOS satellite at the same time as (SM) measurements performed in the agrometeorological stations. The ranges of the mean, standard deviation, minimum, maximum, and coefficient of variation (CV) of ELT among all pixels and stations were 8.28–28.7 cm, 3.27–12.66 cm, 3.03–10.87 cm, 19.23–94.97 cm, and 24.72–98.79%, respectively. The ranges of the characteristics depended on environmental conditions and their means were close to the values of the calibrated layer thickness. The impacts of soil texture, organic matter, vegetation, and their interactive effects on the differentiation and agreement of soil water resources obtained from SWEX_PD vs. data from ground measurements in the study area are discussed. Further studies are required to address the impact of the environmental factors to improve the assessment of soil water resources based on satellite SM products (retrievals).


2001 ◽  
Vol 11 (1) ◽  
pp. 87-91
Author(s):  
Wang Hui-xiao ◽  
Liu Chang-ming ◽  
Yang Zhi-feng

2013 ◽  
Vol 04 (05) ◽  
pp. 100-105 ◽  
Author(s):  
Ting Ning ◽  
Zhongsheng Guo ◽  
Mancai Guo ◽  
Bing Han

2022 ◽  
pp. 90-100
Author(s):  
Javier Lozano Parra ◽  
Jacinto Garrido Velarde ◽  
Ignacio Aguirre

This study quantifies the current and future soil water balance in a spatially distributed way for the whole of Chile and establishes what biomes will be the most affected by variations in water resources. The study of water resources reveals that 90% of surface Chile will reduce its soil water resources in the future if greenhouse gas concentration in the atmosphere does not stop. The most disadvantaged biomes are the forests, where soil water availability could decrease an average of 100 mm/year. Desert biomes could not perceive the hydrological imbalances; however, it is expected its surface increases.


2012 ◽  
Vol 44 (4) ◽  
pp. 690-705 ◽  
Author(s):  
Changchun Zhou ◽  
Yi Luo ◽  
Melanie Zeppel

System dynamics (SD) is one of the most suitable methods available to simulate and quantify the behaviour of complex systems due to it non-linear, multivariable, information feedback and temporally changing characteristics. This paper has improved on Khan et al.'s established model (see Khan et al. (2009) ‘Analyzing complex behavior of hydrological systems through a system dynamics approach’, Environmental Modeling & Software24, 1363–1372) by adding water production functions for three main crops (winter wheat, summer maize and cotton) based on soil water balance at the field level. Conclusions based on the simulation were as follows. (1) The model could simulate the dynamics of water balance components of winter wheat and summer maize relatively accurately through testing and validation. (2) Two to four irrigations were needed for the water-use requirement for winter wheat and summer maize when irrigation level was 75 mm each time. Cotton did not need to be irrigated except for the addition of 60 mm pre-sowing water. (3) Exploiting groundwater as far as possible and taking measures to reduce soil evaporation and at the same keeping irrigation unchanged was one of the best ways for sustainable utilization of water resources in the upper reaches of the Panzhuang District. (4) Water-use efficiencies were consistent with the regions' measured results showing that the model could simulate the water cycle in the field comparatively accurately.


Sign in / Sign up

Export Citation Format

Share Document