Variation in P-acquisition ability and acid phosphatase activity at the early vegetative stage of lentil and their validation on P-deficiency field

2021 ◽  
Vol 43 (7) ◽  
Author(s):  
Shamba Ganguly ◽  
Anirban Roy ◽  
Sumit K. Murmu ◽  
Diana Sagolsem ◽  
Moutushi Sarkar ◽  
...  
1999 ◽  
Vol 26 (8) ◽  
pp. 801 ◽  
Author(s):  
Julie E. Hayes ◽  
Alan E. Richardson ◽  
Richard J. Simpson

Phytase and acid phosphatase activities were measured in extracts from roots of 14- to 22- day old seedlings of a range of temperate pasture species that were grown aseptically in sand culture. Phytase activity from roots of phosphorus- (P-)-deficient Trifolium subterraneum L. was characterised. Activity was enhanced by 40% when extracts were passed through Sephadex G-25, and increased by a further 20–30% with the addition of either 1 mМ EDTA or 5 mМ cysteine to assay solutions. The optimum temperature for phytase activity was 50°C and the optimum pH was 5.3. When compared with phosphatase activity measured in the roots of T. subterraneum, phytase activity exhibited narrower pH and temperature optima, and was also more strongly inhibited by Co2+, Zn2+ and AsO42− ions. Significantly, for the five pasture species examined, phytase activity was less than 5% of the total acid phosphatase activity in extracts of plant roots. Measured phytase activity ranged between 0.13 and 1.7 nkat g–1 root fresh wt and was enhanced under P-deficient relative to P-sufficient growth conditions in all of the pasture species with the exception of Trifolium repens L., for which the Km constant for activity was 50% lower in P-deficient plants. When expressed on a root fresh wt basis, increases in phytase activity of ~1.25-fold were observed for extracts from T. subterraneum and Medicago polymorpha L., and of up to 3.3-fold for Danthonia richardsonii A.B. Cashmore and Phalaris aquatica L. Increases in acid phosphatase activity with P deficiency were less evident. Between 3.1% and 4.3% only of the total phytase activity measured in root extracts was eluted from intact roots into 0.1 М NaCl.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


2008 ◽  
Vol 39 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Tatiana Salles de Souza Malaspina ◽  
Célio Xavier dos Santos ◽  
Ana Paula Campanelli ◽  
Francisco Rafael Martins Laurindo ◽  
Mari Cleide Sogayar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document