Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: impacts of climate change and human activities

2017 ◽  
Vol 27 (6) ◽  
pp. 948-962 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Shaoquan Liu ◽  
Qiang Wang
2019 ◽  
Vol 41 (4) ◽  
pp. 335
Author(s):  
Z. G. Sun ◽  
J. S. Wu ◽  
F. Liu ◽  
T. Y. Shao ◽  
X. B. Liu ◽  
...  

Identifying the effects of climate change and human activities on the degradation and restoration of terrestrial ecosystems is essential for sustainable management of these ecosystems. However, our knowledge of methodology on this topic is limited. To assess the relative contribution of climate change and human activities, actual and potential net primary productivity (NPPa and NPPp respectively), and human appropriation of net primary productivity (HANPP) were calculated and applied to the monitoring of forest, grassland, and cropland ecosystems in Yunnan–Guizhou–Sichuan Provinces, southwest China. We determined annual means of 476 g C m–2 year–1 for NPPa, 1314 g C m–2 year–1 for NPPp, and 849 g C m–2 year–1 for HANPP during the period between 2007 and 2016. Furthermore, the area with an increasing NPPa accounted for 75.12% of the total area of the three ecosystems. Similarly, the areas with increasing NPPp and HANPP accounted for 77.60 and 57.58% of the study area respectively. Furthermore, we found that ~57.58% of areas with ecosystem restored was due to climate change, 23.39% due to human activities, and 19.03% due to the combined effects of human activities and climate change. In contrast, climate change and human activities contributed to 19.47 and 76.36%, respectively, of the areas of degraded ecosystem. Only 4.17% of degraded ecosystem could be attributed to the combined influences of climate change and human activities. We conclude that human activities were mainly responsible for ecosystem degradation, whereas climate change benefitted ecosystem restoration in southwest China in the past decade.


2020 ◽  
Vol 12 (7) ◽  
pp. 1113
Author(s):  
Shahid Naeem ◽  
Yongqiang Zhang ◽  
Jing Tian ◽  
Faisal Mueen Qamer ◽  
Aamir Latif ◽  
...  

Accurate assessment of vegetation dynamics provides important information for ecosystem management. Anthropogenic activities and climate variations are the major factors that primarily influence vegetation ecosystems. This study investigates the spatiotemporal impacts of climate factors and human activities on vegetation productivity changes in China from 1985 to 2015. Actual net primary productivity (ANPP) is used to reflect vegetation dynamics quantitatively. Climate-induced potential net primary productivity (PNPP) is used as an indicator of climate change, whereas the difference between PNPP and ANPP is considered as an indicator of human activities (HNPP). Overall, 91% of the total vegetation cover area shows declining trends for net primary productivity (NPP), while only 9% shows increasing trends before 2000 (base period). However, after 2000 (restoration period), 78.7% of the total vegetation cover area shows increasing trends, whereas 21.3% of the area shows decreasing trends. Moreover, during the base period, the quantitative contribution of climate change to NPP restoration is 0.21 grams carbon per meter square per year (gC m−2 yr−1) and to degradation is 2.41 gC m−2 yr−1, while during the restoration period, climate change contributes 0.56 and 0.29 gC m−2 yr−1 to NPP restoration and degradation, respectively. Human activities contribute 0.36 and 0.72 gC m−2 yr−1 during the base period, and 0.63 and 0.31 gC m−2 yr−1 during the restoration period to NPP restoration and degradation, respectively. The combined effects of climate and human activities restore 0.65 and 1.11 gC m−2 yr−1, and degrade 2.01 and 0.67 gC m−2 yr−1 during the base and restoration periods, respectively. Climate factors affect vegetation cover more than human activities, while precipitation is found to be more sensitive to NPP change than temperature. Unlike the base period, NPP per unit area increases with an increase in the human footprint pressure during the restoration period. Grassland has more variability than other vegetation classes, and the grassland changes are mainly observed in Tibet, Xinjiang, and Inner Mongolia regions. The results may help policy-makers by providing necessary guidelines for the management of forest, grassland, and agricultural activities.


2019 ◽  
Vol 39 (14) ◽  
Author(s):  
周妍妍 ZHOU Yanyan ◽  
朱敏翔 ZHU Minxiang ◽  
郭晓娟 GUO Xiaojuan ◽  
李凯 LI Kai ◽  
苗俊霞 MIAO Junxia ◽  
...  

2020 ◽  
Author(s):  
Yanwen Wang

Net primary productivity (NPP) is an essential indicator of ecosystem function and sustainability and plays a vital role in the carbon cycle, especially in arid and semi-arid grassland ecosystems. Quantifying trends in NPP and identifying the contributing factors are important for understanding the relative impacts of climate change and human activities on grassland degradation. We quantified spatial and temporal patterns in potential NPP (NPPP) and actual NPP (NPPA) in Kyrgyzstan from 2000 to 2014 based on the Zhou Guangsheng model and MOD17A3 NPP data, respectively. By calculating the difference between NPPP and NPPA, we inferred human-induced NPP (NPPH) and thereby characterised changes in grassland NPP attributable to anthropogenic activities. We found that over the past two decades, both climatic variation and anthropogenic activities have significantly affected Kyrgyzstan’s grasslands. Grassland NPP decreased overall but patterns varied between provinces. Climate change, in particular changes in precipitation was the dominant factor driving grassland degradation in the north but human pressures also contributed. In the south however, human activities were associated with extensive areas of grassland recovery. The results provide important contextual understanding for supporting policy for grassland maintenance and restoration under climate change and intensifying human pressures.


2016 ◽  
Vol 9 (6) ◽  
pp. 674-683 ◽  
Author(s):  
Abdelrahim Elobeid Jahelnabi ◽  
Jun Zhao ◽  
ChuanHua Li ◽  
Sona Mohammed Fadoul ◽  
YinFang Shi ◽  
...  

2015 ◽  
Vol 26 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Hao Wang ◽  
Guohua Liu ◽  
Zongshan Li ◽  
Xin Ye ◽  
Meng Wang ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 5887
Author(s):  
Yanzhen Zhang ◽  
Qian Wang ◽  
Zhaoqi Wang ◽  
Jianlong Li ◽  
Zengrang Xu

The Eurasian steppe (EAS) is the largest contiguous grassland worldwide. Quantitative evaluations of the relative impacts of climate change and human activities on grasslands are significant for understanding grassland degradation mechanisms and controlling degraded grasslands. In this study, we analyzed the grassland productivity based on multiple forms of net primary productivity (NPP), including climate NPP (CNPP), actual NPP (ANPP), and human-caused NPP (HNPP) during 2000–2014. The results demonstrate that the average value of annual ANPP in the EAS was 47.36 gC/(m2·year), with a weak decrease (−0.02 gC/(m2·year)) during the study period. The area of grassland degradation account for 48.52% of the total grassland area in EAS, while the area of grassland recovery account for 51.48%. Restorative grassland was mainly distributed in Mongolia and China, while worse grassland was mainly distributed in the Kazakh steppe regions. Grassland degradation in China was mainly caused by climate change, whereas it was mainly caused by human activities in Mongolia. Grassland recovery in Kazakh steppe regions was mainly caused by human activities, but in Mongolia, it was mainly caused by climate change. Compared with temperature, precipitation played a more significant role on grassland productivity.


2021 ◽  
Vol 13 (8) ◽  
pp. 1566
Author(s):  
Yin Zhang ◽  
Qingwu Hu ◽  
Fengli Zou

The Qinghai-Tibetan Plateau (QTP) is the highest plateau in the world. Under the background of global change, it is of unique significance to study the net primary productivity (NPP) of vegetation on the QTP. Based on the Google Earth Engine (GEE) cloud computing platform, the spatio-temporal variation characteristics of the NPP on the QTP from 2001 to 2017 were studied, and the impacts of climate change, elevation and human activity on the NPP in the QTP were discussed. The mean and trend of NPP over the QTP were “high in the southeast and low in the northwest” during 2001–2017. The trend of NPP was mostly between 0 gC·m−2·yr−1 and 20 gC·m−2·yr−1 (regional proportion: 80.3%), and the coefficient of variation (CV) of NPP was mainly below 0.16 (regional proportion: 89.7%). Therefore, NPP was relatively stable in most regions of the QTP. Among the correlation coefficients between NPP and temperature, precipitation and human activities, the positive correlation accounted for 81.1%, 48.6% and 56.5% of the QTP area, respectively. Among the two climatic factors, the influence of temperature on NPP was greater than that of precipitation. The change of human activities and the high temperature at low altitude had positive effects on the increase of NPP.


Sign in / Sign up

Export Citation Format

Share Document