The features of sea-ice cover, snow distribution and its densification in the central arctic ocean

1997 ◽  
Vol 7 (4) ◽  
pp. 317-327
Author(s):  
Cunde Xiao ◽  
Dahe Qin ◽  
Jiawen Ren
2015 ◽  
Vol 12 (3) ◽  
pp. 2897-2945 ◽  
Author(s):  
M. Fernández-Méndez ◽  
C. Katlein ◽  
B. Rabe ◽  
M. Nicolaus ◽  
I. Peeken ◽  
...  

Abstract. The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. The recent reduction in ice cover has the potential to substantially increase phytoplankton primary production, but little is yet known about the fate of the ice-associated primary production and of the nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in the water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78° N) using the irradiance-based Central Arctic Ocean Primary Productivity (CAOPP) model. In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column has lower NPP rates than open water due to light limitation. As indicated by the nutrient ratios in the euphotic zone, nitrate was limiting primary production in the deep Eurasian Basin close to the Laptev Sea area, while silicate was the main limiting nutrient at the ice margin near the Atlantic inflow. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C yr-1, which is within the range of estimates of previous years. However, when adding the contribution by sub-ice algae, the annual production for the deep Eurasian Basin (north of 78° N) could double previous estimates for that area with a surplus of 16 Tg C yr-1. Our data suggest that sub-ice algae are an important component of the ice-covered Central Arctic productivity. It remains an important question if their contribution to productivity is on the rise with thinning ice, or if it will decline due to overall sea-ice retreat and be replaced by phytoplankton.


2015 ◽  
Vol 12 (11) ◽  
pp. 3525-3549 ◽  
Author(s):  
M. Fernández-Méndez ◽  
C. Katlein ◽  
B. Rabe ◽  
M. Nicolaus ◽  
I. Peeken ◽  
...  

Abstract. The ice-covered central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. The recent reduction in ice cover has the potential to substantially increase phytoplankton primary production, but little is yet known about the fate of the ice-associated primary production and of the nutrient supply with increasing warming. This study presents results from the central Arctic Ocean collected during summer 2012, when sea-ice extent reached its lowest ever recorded since the onset of satellite observations. Net primary productivity (NPP) was measured in the water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78° N) using the irradiance-based Central Arctic Ocean Primary Productivity (CAOPP) model. In addition, new annual production has been calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the central Arctic Ocean at the end of the productive season (August–September). The ice-covered water column has lower NPP rates than open water due to light limitation in late summer. As indicated by the nutrient ratios in the euphotic zone, nitrate was limiting primary production in the deep Eurasian Basin close to the Laptev Sea area, while silicate was the main limiting nutrient at the ice margin near the Atlantic inflow. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C yr−1, which is within the range of estimates of previous years. However, when adding the contribution by sub-ice algae, the annual production for the deep Eurasian Basin (north of 78° N) could double previous estimates for that area with a surplus of 16 Tg C yr−1. Our data suggest that sub-ice algae are an important component of the productivity in the ice-covered Eurasian Basin of the central Arctic Ocean. It remains an important question whether their contribution to productivity is on the rise with thinning ice, or whether it will decline due to overall sea-ice retreat and be replaced by phytoplankton.


2020 ◽  
Vol 33 (10) ◽  
pp. 4347-4367
Author(s):  
Allison B. Marquardt Collow ◽  
Richard I. Cullather ◽  
Michael G. Bosilovich

AbstractSurface air temperatures have recently increased more rapidly in the Arctic than elsewhere in the world, but large uncertainty remains in the time series and trend. Over the data-sparse sea ice zone, the retrospective assimilation of observations in numerical reanalyses has been thought to offer a possible, but challenging, avenue for adequately reproducing the historical time series. Focusing on the central Arctic Ocean, output is analyzed from 12 reanalyses with a specific consideration of two widely used products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim, hereafter ERA-I). Among the reanalyses considered, a trend of 0.9 K decade−1 is indicated but with an uncertainty of 6%, and a large spread in mean values. There is a partitioning among those reanalyses that use fractional sea ice cover and those that employ a threshold, which are colder in winter by an average of 2 K but agree more closely with in situ observations. For reanalyses using fractional sea ice cover, discrepancies in the ice fraction in autumn and winter explain most of the differences in air temperature values. A set of experiments using the MERRA-2 background model using MERRA-2 and ERA-I sea ice and sea surface temperature indicates significant effects of boundary condition differences on air temperatures, and a preferential warm bias inherent in the MERRA-2 model sea ice representation. Differences between experiments and reanalyses suggest the available observations apply a significant constraint on reanalysis mean temperatures.


2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2014 ◽  
Vol 44 (5) ◽  
pp. 1329-1353 ◽  
Author(s):  
Michel Tsamados ◽  
Daniel L. Feltham ◽  
David Schroeder ◽  
Daniela Flocco ◽  
Sinead L. Farrell ◽  
...  

Abstract Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.


Sign in / Sign up

Export Citation Format

Share Document