Finite element analysis of couple effect of soil displacement and axial load on single inclined pile

2014 ◽  
Vol 21 (9) ◽  
pp. 3656-3664 ◽  
Author(s):  
Li Wang ◽  
Gang Zheng ◽  
Ruo-nan Ou
2014 ◽  
Vol 578-579 ◽  
pp. 695-698
Author(s):  
Xi Le Li ◽  
Li Hua Niu

Based on the model experiment on seismic behavior of a 1-span, 2-story concrete-filled rectangular steel tubal (CFRST) frame under lateral cyclic loads, a 3-D nonlinear finite element model of concrete-filled rectangular steel tubular frame is proposed in the paper. Compared with the experimental hysteresis curve, the computational results are found to be accurate, which shows that this model proposed in the paper can be applied in structure analysis of concrete-filled rectangular tubular frames. So the model was used in the finite element analysis of concrete-filled rectangular frame with different axial load level. Compared the computational displacement envelop curves, it concludes that the ductility and bearing capacity of CFRST frames reduces with the increasing axial load level.


2019 ◽  
Vol 8 (8) ◽  
pp. 1103 ◽  
Author(s):  
García-Braz ◽  
Prados-Privado ◽  
Zanatta ◽  
Calvo-Guirado ◽  
Prados-Frutos ◽  
...  

Background: The goal of this study was to analyze the stress distribution on two types of extra-short dental implants with 5 mm of length: An internal hexagon (IH) and morse taper connection (MT). Methods: The three-dimensional model was composed of trabecular and cortical bone, a crown, an extra-short dental implant and their components. An axial load of 150 N was applied and another inclined 30° with the same magnitude. Results: Stress concentrations on the IH implant are observed in the region of the first threads for the screw. However, in the MT implant the highest stress occurs at the edges of the upper implant platform. Conclusions: In view of the results obtained in this study the two types of prosthetic fittings present a good stress distribution. The Morse taper connections presented better behavior than the internal in both loading configurations.


2020 ◽  
Vol 08 (01) ◽  
pp. 09-16
Author(s):  
Chhavi Sharma ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Anupreet Kaur Chawla

Abstract Introduction Dental implants are common treatment modality for tooth loss which leads to unaesthetic appearance and may also cause deterioration of mastication and speech. The aim of implant therapy in dentistry is to restore tissue contour, function, comfort, aesthetic, and speech. Dental implant role is to transfer the mechanical force created during chewing to the supporting osseous tissues within the mandible and maxilla. The importance of biomechanical factors such as the bone-implant interface, implant thread design, the length and diameter of implants, type of loading, the quality and quantity of surrounding bone have been strained by various authors. The selection of implant thread design plays an important role in the outcome of the treatment. This study was done to evaluate the influence of different thread designs on stress distribution of osseointegrated implant using three-dimensional (3D) finite-element analysis. Materials and Methods Three implants with different thread designs, namely V-thread, buttress, and reverse buttress thread designs were considered and dimensions were standardized. The site considered was the mandibular molar region with cortical and cancellous bone assuming to be isotropic and homogeneous. The implant modeling was done with the ANSYS 18.1 software. Axial load (100N) and buccolingual load (50N) were applied. The stresses were calculated as Von Mises stress criterion. Results Minimum von mises Stress concentration was seen for tapered implant body with reverse buttress thread design under axial load 100N and tapered implant body with V-thread under buccolingual load of 50N at cortical bone which signifies bone preservation. Stress levels were observed maximum at implant and minimum at the cancellous bone. Conclusion Hence, within the limitations of this study the results obtained can be applied clinically for appropriate selection of implant thread design for a predictable success of implant therapy.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


Author(s):  
Anoop Moodambail ◽  
Remo Neri ◽  
Srinivasan Venkataramanan ◽  
Premanjan Sethy ◽  
Prasanth Kumar Bysani

Fasteners are typically designed to withstand axial or shear loads in a joint assembly. However, in selected scenarios fasteners are subjected to combination of axial, shear and bending loads. The criterion typically used to predict the ultimate failure of a member in combined shear and tension is based on the maximum normal stress and maximum shear stress theories. Test conducted by NASA found that under joint separation condition, the existing combined loading failure criteria over-predicts the strength of the bolts. This paper develops the methodology of predicting fastener failure using finite element analysis with elasto-plastic material properties under combination of axial load and shear using a strain-based failure criterion. This methodology is validated with NASA test results. Elasto-plastic finite element analysis is shown to be an effective way to simulate test results. In order to define the full range capability values for different combinations of shear and tension loads, several cases were run with different load values. The study further extends to identify new limiting criteria under a combination of axial load and offset shear conditions for a selected stud. The load capability can be used to calculate margin of safety for flange-joints. Further this approach can be generalized for application to all pins and fasteners subjected to combined shear and tension loads.


Sign in / Sign up

Export Citation Format

Share Document