Nonlinear Finite Element Analysis of the Bearing Capacity of a New Type of Column under Axial Load

2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.

2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2011 ◽  
Vol 311-313 ◽  
pp. 1889-1893
Author(s):  
Ya Wen Du ◽  
Hong Yu Lin

Finite element analysis on three trusses was carried out in order to study the performance of combined truss with steel tube and concrete filled steel tube. The first specimen was a RHS truss, the second one was a combined truss with steel tube and concrete filled steel tube, and the third one was a concrete-filled steel tube truss. The results show that the finite element model can reflect the static performance of combined truss and can carry out the affective parameters analysis, which can offer theory evidence for engineering application of combined truss. The damage of three trusses was all due to the joint failure and the failure mode was all punishing shearing failure, but the concrete filled changed by the failure place of joints. The bearing capacity of three trusses was controlled by the jionts and the strength and stiffness of jionts were increased by the concrete filled in the chord, therefore the bearing capacity of trusses was increased while the deformation of trusses was decreased. In combined truss with steel tube and concrete filled steel tube, the concrete-filled steel tube joints can improve the bearing capacity and the steel tube joint can satisfy the requirements of deformation, which have obvious advantages in the engineering application.


Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2014 ◽  
Vol 578-579 ◽  
pp. 695-698
Author(s):  
Xi Le Li ◽  
Li Hua Niu

Based on the model experiment on seismic behavior of a 1-span, 2-story concrete-filled rectangular steel tubal (CFRST) frame under lateral cyclic loads, a 3-D nonlinear finite element model of concrete-filled rectangular steel tubular frame is proposed in the paper. Compared with the experimental hysteresis curve, the computational results are found to be accurate, which shows that this model proposed in the paper can be applied in structure analysis of concrete-filled rectangular tubular frames. So the model was used in the finite element analysis of concrete-filled rectangular frame with different axial load level. Compared the computational displacement envelop curves, it concludes that the ductility and bearing capacity of CFRST frames reduces with the increasing axial load level.


2014 ◽  
Vol 578-579 ◽  
pp. 269-273
Author(s):  
Bing Li ◽  
Shuang Meng ◽  
Wei Hao Wang

The objective of this paper is to provide the references through finite element analysis for steel tube concrete beams bearing capacity settlement. The paper verified the correctness of the constitutive relation of concrete, the correctness and the model through the establishment of the concrete damaged plasticity model with recycled concrete details in the finite element analysis software ABAQUS. Then the stress characteristics of steel pipe concrete beam in bending condition under different substitution rate could be found through model calculation. The result is that the mid span bending - strain curve from simulation agreed to the experimental results, and the model is proved correct. Finally it came to the conclusions. Other things being equal, the recycled concrete filled square tube changed a lot in bending state when the substitution rate grows, but it didn’t occur to the circular one. In the meantime, the writer proposed the conjecture on the bearing capacity calculation of the two types of structure.


2014 ◽  
Vol 525 ◽  
pp. 568-572
Author(s):  
Yang Feng Wu ◽  
Hong Mei Zhang

A new composite strengthening method that the CFST short column was strengthened with concrete filled steel tube was presented. Through the finite element analysis of five specimens with strengthening circular concrete filled steel tube columns and a specimen without strengthening circular concrete filled steel tube to explore the impact of the outer layer of concrete strength grade, external pipe wall thickness for the ultimate bearing capacity of concrete filled steel tube columns. The results show that with the increase of the outer pipe wall thickness, double concrete filled steel tube column yield strength and ultimate strength have increased. As the outer concrete strength grade increased as the specimen bearing capacity increased. When the concrete strength grade greater than C40, the improvement of concrete strength for specimen ultimate bearing capacity is not great.


2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


2010 ◽  
Vol 163-167 ◽  
pp. 670-675
Author(s):  
Jiang Tao Yu ◽  
Ke Quan Yu ◽  
Bo Tang

Four groups (12 in total) of welded hollow spherical joints with ribbed stiffener were tested under uniaxial loads in this paper. With the adoption of elasto-plastic model and consideration of geometric and material nonlinearity, the whole loading process of the specimens was simulated by ABAQUS. Through combining the test data and computing results, two recommendations used to quantitatively determine the ultimate failure load of spherical joint in test are proposed. The relationships between bearing capacity and various influence factors, which include the thickness and diameter of hollow sphere, diameter of steel tube are analyzed and illustrated at the end of this paper.


2011 ◽  
Vol 255-260 ◽  
pp. 619-623
Author(s):  
Yao Zeng ◽  
Chong Wu

Two different specimens of hollow composite columns with perforated ribs, one is the column with double steel skin and the other is with single steel skin, were designed for imposing axial compression test. The tests indicated that both of the columns have a good bearing capacity and the column with double steel skin has a comparatively better bearing capacity than the one with single steel skin. Then comparisons between tests and finite element analysis (FEA) were preceded, which showed that not only the load-displacement relationship of the columns, but also a reasonable failure mode can be simulated by the finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document