Numerical optimization of gourd-shaped surface texture and experiment of tribological performance

2017 ◽  
Vol 24 (12) ◽  
pp. 2773-2782
Author(s):  
Ping Chen ◽  
Jun-ling Li ◽  
Zhe Shi ◽  
Xin Xiang
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlong Shen ◽  
Tong Zhang ◽  
Jimin Xu ◽  
Xiaojun LIU ◽  
Kun Liu

Purpose This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored. Design/methodology/approach This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples. Findings The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise. Originality/value As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.


2010 ◽  
Vol 37-38 ◽  
pp. 41-45 ◽  
Author(s):  
Zhi Wei Wang ◽  
Mei Wei Chen ◽  
Jian Wei Wu ◽  
Hai Hui Zheng ◽  
Xiao Feng Zheng

Surface texture of tribological interfaces has the potential to improve friction and lubrication performance of various mechanical components. This review paper emphasizes on the current status of the research of surface texture, including the features, the effects on tribological performance, the forming techniques, and the modeling and simulation of surface texture. It is intended to help readers to gain a more comprehensive view on surface texture of tribological interfaces.


Author(s):  
Mohammad Tauviqirrahman ◽  
Toni Prahasto ◽  
Mohamad Lutfi Assaidiky ◽  
Muchammad Muchammad

1999 ◽  
Vol 122 (1) ◽  
pp. 257-259 ◽  
Author(s):  
Matthew A. O’Hara ◽  
Yong Hu ◽  
David B. Bogy

The object of this paper will be to optimize the contact stiffness (CS) of an existing proximity recording air bearing surface (ABS). The CS is a measure of the slider’s increase in contact force with increase in slider/disk interference. By minimizing this, the amount of force transmitted through the slider at the interface is minimized. This should, in turn, minimize the amount of wear, improving the tribological performance. Comparisons of the pre- and post-optimized slider have been made. In combination with research that demonstrates the ability of the CS parameter to predict tribological behavior (Hu et al., ASME J. Tribol., 120, pp. 272–279) this paper demonstrates the feasibility of numerical optimization of the tribological behavior of proximity recording air bearing sliders. [S0742-4787(00)03201-X]


2006 ◽  
Vol 128 (3) ◽  
pp. 674-676 ◽  
Author(s):  
Gracious Ngaile ◽  
Mark Gariety ◽  
Taylan Altan

The effects of textured tubes on the tribological performance in tube hydroforming (THF) are discussed. Textured surfaces, namely sand blasted, knurled, electrical discharge machined (EDM), and as rolled surfaces, were tested under various interface pressure conditions. Sand blasted textured tubes were found to have the best tribological performance. The study has demonstrated that the increase in the interface pressure between the tube and the die can result in either lower or higher interface friction depending on the surface texture conditions. The study has also shown that different surface texture treatment methods can alter the hardness of the tube surface with significant influence on the tribological performance.


2018 ◽  
Vol 127 ◽  
pp. 545-556 ◽  
Author(s):  
Wieslaw Grabon ◽  
Pawel Pawlus ◽  
Slawomir Wos ◽  
Waldemar Koszela ◽  
Michal Wieczorowski

2014 ◽  
Vol 47 (23) ◽  
pp. 235301 ◽  
Author(s):  
Hui Song ◽  
Li Ji ◽  
Hongxuan Li ◽  
Xiaohong Liu ◽  
Huidi Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document