Tooth surface error correction of hypoid gears machined by duplex helical method

Author(s):  
Shun-xing Wu ◽  
Hong-zhi Yan ◽  
Zhi-yong Wang ◽  
Ren-gui Bi ◽  
Zhi Chen ◽  
...  
2011 ◽  
Vol 86 ◽  
pp. 439-442 ◽  
Author(s):  
Qi Fan

Design and manufacturing of spiral bevel and hypoid gears is highly complicated and has to be based on the employment of computerized tools. This paper comprehensively describes the latest developments in computerized modeling of tooth surface generation, flank form error correction, ease-off calculation, and tooth contact analysis for spiral bevel and hypoid gears. Accordingly, advanced software programs for computerized design and manufacturing of hypoid gears are developed.


1998 ◽  
Vol 120 (3) ◽  
pp. 441-447 ◽  
Author(s):  
K. Kawasaki ◽  
H. Tamura

In this paper, a duplex spread blade method for cutting hypoid gears with modified tooth surface is proposed. The duplex spread blade method provides a rapid and economical manufacturing method because both the ring gear and pinion are cut by a spread blade method. In the proposed method, the nongenerated ring gear is manufactured with cutting edge that is altered from the usual straight line to a circular arc with a large radius of curvature and the circular arc cutting edge produces a modified tooth surface. The pinion is generated by a cutter with straight cutting edges as usual. The main procedure of this method is the determination of the cutter specifications and machine settings. The proposed method was validated by gear manufacture.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


2004 ◽  
Vol 127 (4) ◽  
pp. 646-655 ◽  
Author(s):  
Vilmos Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and optimal diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in (Simon, V., 2000, “Load Distribution in Hypoid Gears,” ASME J. Mech. Des., 122, pp. 529–535) the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the diameter of the cutter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Chengcheng Liang ◽  
Chaosheng Song ◽  
Caichao Zhu ◽  
Yawen Wang ◽  
Siyuan Liu ◽  
...  

Abstract Tool errors are inevitable in an actual gear-manufacturing environment and may directly affect the accuracy of machined tooth surfaces. In this paper, tool errors including spheric radius, pressure angle, rake angle, regrind angle, and cutting side relief angle errors for three-face blade are defined and considered to establish the accurate tooth surface mathematical model for face-hobbed hypoid gears based on the manufacturing process and the meshing theory. The simulation flowchart for tooth surface modeling and tooth surface topography deviation analysis are proposed and performed. Results show that the tooth surface deviation is positive with positive spheric radius and rake angle errors and contrary results can be found for other three tool errors. In addition, the impact of the pressure angle error is the strongest. In addition, the rake angle error has the weakest effect and the influence of spheric radius error on the tooth surface deviation is unsubstantial. For location of tooth surface deviation, the maximum deviation is at the top on the heel and the minimum deviation is at the middle on the toe for spheric radius error. The maximum and minimum deviations are at the top and the middle tooth on the heel for other factors, respectively.


2003 ◽  
Vol 125 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Jun-Long Wu ◽  
Chia-Chang Liu ◽  
Chung-Biau Tsay ◽  
Shigeyoshi Nagata

Crossed-axis helical gears and hypoid gears are two conventional crossed-axis power transmission devices. Helipoid gears, a novel gear proposed herein, possess the merits of the crossed-axis helical and hypoid gears. A mathematical model of the proposed helipoid gear cut by shapers is also derived according to the cutting mechanism and the theory of gearing. The investigation shows that the tooth surface varies with the number of teeth of the shaper. Computer graphs of the helipoid gear are presented according to the developed gear mathematical model, and the tooth surface deviations due to the number of teeth of the shaper are also investigated.


Sign in / Sign up

Export Citation Format

Share Document