Effects of temperatures and pH values on rheological properties of cemented paste backfill

2021 ◽  
Vol 28 (6) ◽  
pp. 1707-1723
Author(s):  
Qin-li Zhang ◽  
Yi-teng Li ◽  
Qiu-song Chen ◽  
Yi-kai Liu ◽  
Yan Feng ◽  
...  
2019 ◽  
Vol 29 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Liuhua Yang ◽  
Hongjiang Wang ◽  
Aixiang Wu ◽  
Hong Li ◽  
Arlin Bruno Tchamba ◽  
...  

Abstract Cemented paste backfill (CPB) is considered to be a concentrated suspension in which tailings are bonded together by the hydraulic binder and water, and it has a high solid volume concentration (≥50 vol.%). Although the shear thinning and thickening of CPB has been extensively reported in literature, the shear history effects have been ignored in previous studies. In this paper, by using rheometer and Focused Beam Reflectance Measurement, the relationship between the rheological properties and microstructure of the paste under different shear histories was studied. The results have shown that at a low shear rate, CPB revealed shear thinning, low yield stress and low index parameters; while exhibited shear thickening, high yield stress and high consistency index when at high shear rates of shear history. This agreed with the general trends shown in the FBRM analysis. It was proposed that the action of shear is beneficial to particle dispersion, whereas a high shear rate history tends to promote the aggregation of particles. It was revealed that both shear thinning and thickening of paste are related to the situation of particles (flocculation, dispersion and aggregation), and shear history effects play an important role in rheological properties of CPB.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1159
Author(s):  
Reagan Kabanga Dikonda ◽  
Mamert Mbonimpa ◽  
Tikou Belem

The rheological properties (yield stress, flow index and infinite dynamic viscosity) and mechanical properties (unconfined compressive strength, UCS) of different cemented paste backfill (CPB) recipes must be determined during the laboratory optimization phase. However, the influence of the mixing procedure on these properties has scarcely been studied so far. The objective of this paper is to assess to what extent these properties depend on the specific mixing energy (SME) for a given type of mixer. CPB recipes were prepared based on two types of tailing (CPB-T1 and CPB-T2, also referred to as T1 and T2) at a fixed solid percentage for each type of tailing using the Omcan laboratory mixer. A mixture of 80% slag and 20% GU was used as a binder. The mixing time and the rotation speed of the mixer were successively varied. For each recipe prepared, we determined the SME, the rheological properties of fresh CPB (at the end of mixing) and the UCS at 7, 28 and 90 days of curing. The results show that yield stress and infinite viscosity decreased when SME increased in an interval going from 0.3 to 3.8 Wh/kg and 0.6 to 6 Wh/kg for CPB-T1 and CPB-T2, respectively. An increasing trend in UCS with increasing SME was also observed. Empirical equations describing the change of the rheological properties with the SME are used to estimate the change in rheological properties of CPB along the distribution system, considering the specific energy dissipation during CPB transportation. A mixing procedure for obtaining CPB mixtures that are representative of CPB deposited in underground mine stopes is suggested for laboratories who currently use a same mixing procedure, irrespective of the variable field specific energy.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 718
Author(s):  
Weicheng Ren ◽  
Rugao Gao ◽  
Youzhi Zhang ◽  
Maoxin Hou

Ultra-fine tailings cemented paste backfill (UCPB) exhibits special rheological characteristics with the effect of an ultrasonic sound field. In this study, in order to explore the thickening effect of slurry under ultrasonic wave action, we examined the rheological properties with ultrasonic wave tests of UCPB and the rheological properties after ultrasonic wave tests of UCPB. We found that the rheological curve of the slurry changed; the Herschel–Bulkley (HB) model in the initial state transformed into the Bingham model under the action of ultrasound. Ultrasonic waves have a positive effect on reducing slurry viscosity and yield stress. The rheological test of the slurry with ultrasonic wave action had a positive effect on significantly reducing the apparent viscosity and initial yield stress of slurry with a 62% mass concentration. The rheological test of slurry with ultrasonic wave action and the rheological test after ultrasonic wave action both have positive effects on reducing the viscosity and yield stress of the slurry with a 64% to 68% mass concentration; the overall effect of reducing the viscosity and yield stress of UCPB is greater after ultrasonic wave action of UCPB.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 240 ◽  
Author(s):  
Liuhua Yang ◽  
Hongjiang Wang ◽  
Hong Li ◽  
Xu Zhou

Cemented paste backfill (CPB) consists of a mixture of fine particles, mainly consisting of tailings and cement dispersed in water. Therefore, it is necessary to introduce an intensive shearing force into the paste during mixing in order to maintain an equilibrium between agglomeration and dispersion. It is influential for the macroscopical fluidity and rheological properties when changes occur in the microstructure of CPB under shear. However, the research on how mixing affects the properties of CPB is still in its infancy. This paper puts an insight into the relation between the mixing intensity and the rheological behavior of the CPB. It can be demonstrated that two threshold mixing intensities exist in this process. After passing the first or lower threshold, the rheological parameters (yield stress and viscosity) of the paste decrease. After passing the second threshold, a continued increase is observed. The changes in rheological properties are connected with physical and chemical changes in the microstructure of the CPB. The results are discussed in light of the three concepts “structural breakdown”, “thixotropic breakdown”, and “thixotropic behavior” of rheological properties of CPB.


Sign in / Sign up

Export Citation Format

Share Document