Separation of heavy metal and protein from wastewater by sulfonated polyphenylsulfone ultrafiltration membrane process prepared by glycine betaine enriched coagulation bath

2018 ◽  
Vol 35 (6) ◽  
pp. 1281-1289 ◽  
Author(s):  
Irfana Kolangare Moideen ◽  
Arun Mohan Isloor ◽  
Asif Ali Qaiser ◽  
Ahmed Fauzi Ismail ◽  
Mohd Sohaimi Abdullah
Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 896 ◽  
Author(s):  
Shafaqat Ali ◽  
Zohaib Abbas ◽  
Mahmoud F. Seleiman ◽  
Muhammad Rizwan ◽  
İlkay YAVAŞ ◽  
...  

Unexpected biomagnifications and bioaccumulation of heavy metals (HMs) in the surrounding environment has become a predicament for all living organisms together with plants. Excessive release of HMs from industrial discharge and other anthropogenic activities has threatened sustainable agricultural practices and limited the overall profitable yield of different plants species. Heavy metals at toxic levels interact with cellular molecules, leading towards the unnecessary generation of reactive oxygen species (ROS), restricting productivity and growth of the plants. The application of various osmoprotectants is a renowned approach to mitigate the harmful effects of HMs on plants. In this review, the effective role of glycine betaine (GB) in alleviation of HM stress is summarized. Glycine betaine is very important osmoregulator, and its level varies considerably among different plants. Application of GB on plants under HMs stress successfully improves growth, photosynthesis, antioxidant enzymes activities, nutrients uptake, and minimizes excessive heavy metal uptake and oxidative stress. Moreover, GB activates the adjustment of glutathione reductase (GR), ascorbic acid (AsA) and glutathione (GSH) contents in plants under HM stress. Excessive accumulation of GB through the utilization of a genetic engineering approach can successfully enhance tolerance against stress, which is considered an important feature that needs to be investigated in depth.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Fikri Shohur ◽  
Zawati Harun ◽  
W. J. Lau ◽  
Muhamad Zaini Yunos ◽  
Mohd Riduan Jamalludin

One of the big challenges in developing a good asymmetric membrane  is macrovoid formation that leads to reduction of rejection value.  The most common method to reduce or suppress macrovoid formation is by addition of controlled solvent to the coagulation bath. Therefore, the effect of difference coagulants based on dissolved KCl (monovalent) and dissolved Na2SO4(divalent) with different concentration onto asymmetric Polysulfone (PSf) ultrafiltration membrane was investigated in this work. The PSf ultrafiltration membranes were prepared by using phase inversion method using these two immerse aqueous solutions. The performances of membranes were evaluated via pure water flux (distilled water) and solute rejection (humic acid). Results on the cross section revealed that the structure of membrane show a straight pattern of bigger finger-like pore structure from top to bottom layer tend to reduce with at the same time the diameter of finger-like pore structure  also increased, as salt medium of coagulant increases. These obviously shown by permeation values for both salt mediums were higher compared to without salt coagulant. This reduction of finger-like structure at bottom layer occurred along together with the formation of sponge shape structure. The growth of thick sponge shape is strongly influence by kinetic phase inversion of salt coagulant that also creates resistance to permeation mechanism. However the intense salt coagulant medium can cause the bigger sponge structure that will slightly reduce rejection and increase the permeation.  This was proved by the rejection of KCl medium started to increase at 1-3% but slightly reduced at 4%. Based on the result analysis demonstrated that the ideal membrane with highest rejection and good permeation values was membrane immersed into 1% Na2SO4 coagulation medium.


2016 ◽  
Vol 57 (52) ◽  
pp. 24788-24798 ◽  
Author(s):  
Irfana Moideen K ◽  
Arun M. Isloor ◽  
B. Garudachari ◽  
A.F. Ismail

Author(s):  
Mahesh K. Mahatma ◽  
Nidhi Radadiya ◽  
Vipul B. Parekh ◽  
Bhavika Dobariya ◽  
Lalit Mahatma

Expression of S-Adenosylmethionine synthetase (SAMS) gene in pigeon pea (Cajanus cajan L.) was analyzed by qRT PCR during abiotic stresses viz., drought, heavy metal (CdCl2) and cold. Maximum expression of SAMS gene in the leaves were observed at 3 days after drought stress with 15% PEG. Conversely, its expression was not detected in leaves and roots at cadmium stress but transcripts were down regulated as compared to the control. After 6 days of stress expression of SAMS gene was increased in leaves and roots as compared to the control but it was lower than its expression at 3 days after stress. The activities of antioxidative enzymes like glutathione reductase, glutathione-s-transferase, ascorbate peroxidase and metabolite constituents like polyamines and glycine betaine were also analyzed. The activities of antioxidative enzymes and concentration of glycine betaine showed remarkable increase in response to all stresses, except ascorbate peroxidase in heavy metal stress.


2017 ◽  
Vol 314 ◽  
pp. 38-49 ◽  
Author(s):  
Xiaofeng Fang ◽  
Jiansheng Li ◽  
Xin Li ◽  
Shunlong Pan ◽  
Xuan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document