Conceptual Design Framework for Setting Up Aluminum Alloy Powder Production System for Selective Laser Melting (SLM) Process

JOM ◽  
2019 ◽  
Vol 71 (5) ◽  
pp. 1840-1857
Author(s):  
Gaamangwe Matsagopane ◽  
Eyitayo Olatunde Olakanmi ◽  
Annelize Botes ◽  
Said Kutua
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1673
Author(s):  
Xianyin Duan ◽  
Xinyue Chen ◽  
Kunpeng Zhu ◽  
Tao Long ◽  
Shiyang Huang ◽  
...  

In the selective laser melting process, metal powder melted by the laser heat source generates large instantaneous energy, resulting in transient high temperature and complex stress distribution. Different temperature gradients and anisotropy finally determine the microstructure after melting and affect the build quality and mechanical properties as a result. It is important to monitor and investigate the temperature and stress distribution evolution. Due to the difficulties in online monitoring, finite element methods (FEM) are used to simulate and predict the building process in real time. In this paper, a thermo-mechanical coupled FEM model is developed to predict the thermal behaviors of the melt pool by using Gaussian moving heat source. The model could simulate the shapes of the melt pool, distributions of temperature and stress under different process parameters through FEM. The influences of scanning speed, laser power, and spot diameter on the distribution of the melt pool temperature and stress are investigated in the SLM process of Al6063, which is widely applied in aerospace, transportation, construction and other fields due to its good corrosion resistance, sufficient strength and excellent process performance. Based on transient analysis, the relationships are identified among these process parameters and the melt pool morphology, distribution of temperature and thermal stress. It is shown that the maximum temperature at the center point of the scanning tracks will gradually increase with the increment of laser power under the effect of thermal accumulation and heat conduction, as the preceded scanning will preheat the subsequent scanning tracks. It is recommended that the parameters with optimized laser power (P = 175–200 W), scanning speed (v = 200–300 mm/s) and spot diameter (D = 0.1–0.15 mm) of aluminum alloy powder can produce a high building quality of the SLM parts under the pre-set conditions.


2021 ◽  
Vol 410 ◽  
pp. 203-208
Author(s):  
I.S. Loginova ◽  
N.A. Popov ◽  
A.N. Solonin

In this work we studied the microstructure and microhardness of standard AA2024 alloy and AA2024 alloy with the addition of 1.5% Y after pulsed laser melting (PLM) and selective laser melting (SLM). The SLM process was carried out with a 300 W power and 0.1 m/s laser scanning speed. A dispersed microstructure without the formation of crystallization cracks and low liquation of alloying elements was obtained in Y-modified AA2024 aluminum alloy. Eutectic Al3Y and Al8Cu4Y phases were detected in Y-modified AA2024 aluminum alloy. It is led to a decrease in the formation of crystallization cracks The uniform distribution of alloying elements in the yttrium-modified alloy had a positive effect on the quality of the laser melting zone (LMZ) and microhardness.


2021 ◽  
Vol 45 (1) ◽  
pp. 1-10
Author(s):  
Arnold Mauduit ◽  
Hervé Gransac ◽  
Sébastien Pillot

Various selective laser melting (SLM) configurations (8 in all) were tested on aluminum alloy AlSi7Mg0.6 by making single tracks on parallelepipeds specimens. We used an energy balance as a means of connecting the machine parameters (power, speed, etc.) of the 8 configurations to the morphology (geometry) of the single tracks. On this basis, we correlated the width, depth and especially the section area of the melt pool (single track) to the linear energy density. We were also able to assess the absorption coefficient of the aluminum alloy AlSi7Mg0.6 as a function of the temperature. The study was then focused on the microstructure and the possible impacts on the material properties including on the mechanical characteristics and the anisotropy observed in literature based on the build direction. Evidence suggests that the Hall-Petch relation can be used to explain this anisotropy. The thermal analysis highlighted two laser operating modes: the keyhole mode and the conduction mode. These modes have also been described via the morphology of the single tracks. Finally, a comparison between Rosenthal’s theoretical model (in the case of the conduction mode) and actual conditions was proposed by the obtained geometry of the single tracks as well as the cooling speeds calculated and measured using the dendrite arm spacing (DAS). The maximum temperatures achieved were also assessed by Rosenthal’s theoretical model which made it possible to explain the evaporation of some chemical elements during the manufacturing of the aluminum alloy through SLM.


Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 298 ◽  
Author(s):  
Daniel Koutny ◽  
David Palousek ◽  
Libor Pantelejev ◽  
Christian Hoeller ◽  
Rudolf Pichler ◽  
...  

2016 ◽  
Vol 43 (4) ◽  
pp. 0403002 ◽  
Author(s):  
钱德宇 Qian Deyu ◽  
陈长军 Chen Changjun ◽  
张敏 Zhang Min ◽  
王晓南 Wang Xiaonan ◽  
敬和民 Jing Hemin

Sign in / Sign up

Export Citation Format

Share Document