scholarly journals On the analytic properties of intertwining operators II: Local degree bounds and limit multiplicities

2019 ◽  
Vol 230 (2) ◽  
pp. 771-793
Author(s):  
Tobias Finis ◽  
Erez Lapid
Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


2014 ◽  
Vol 29 (03n04) ◽  
pp. 1430001 ◽  
Author(s):  
V. K. DOBREV

We give a review of some group-theoretical results related to nonrelativistic holography. Our main playgrounds are the Schrödinger equation and the Schrödinger algebra. We first recall the interpretation of nonrelativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. One important result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory, and that these operators and the bulk-to-boundary operators are intertwining operators. Further, we recall the fact that there is a hierarchy of equations on the boundary, invariant with respect to Schrödinger algebra. We also review the explicit construction of an analogous hierarchy of invariant equations in the bulk, and that the two hierarchies are equivalent via the bulk-to-boundary intertwining operators. The derivation of these hierarchies uses a mechanism introduced first for semisimple Lie groups and adapted to the nonsemisimple Schrödinger algebra. These require development of the representation theory of the Schrödinger algebra which is reviewed in some detail. We also recall the q-deformation of the Schrödinger algebra. Finally, the realization of the Schrödinger algebra via difference operators is reviewed.


1983 ◽  
Vol 3 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Colin E. Sutherland

AbstractIf K is a countable amenable group acting freely and ergodically on a probability space (Γ, μ), and G is an arbitrary countable amenable group, we construct an injection of the space of unitary representations of G into the space of unitary 1-cocyles for K on (Γ, μ); this injection preserves intertwining operators. We apply this to show that for many of the standard non-type-I amenable groups H, the representation theory of H contains that of every countable amenable group.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Mirko Primc

AbstractWe construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.


2011 ◽  
Vol 63 (6) ◽  
pp. 1238-1253 ◽  
Author(s):  
Daniel Bump ◽  
Maki Nakasuji

AbstractW. Casselman defined a basis fu of Iwahori fixed vectors of a spherical representation of a split semisimple p-adic group G over a nonarchimedean local field F by the condition that it be dual to the intertwining operators, indexed by elements u of the Weyl group W. On the other hand, there is a natural basis , and one seeks to find the transition matrices between the two bases. Thus, let and . Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then , where z are the Langlands parameters for the representation and α runs through the set S(u, v) of positive coroots (the dual root systemof G) such that with rα the reflection corresponding to α. The condition is conjecturally always satisfied if G is simply-laced and the Kazhdan–Lusztig polynomial Pw0v,w0u = 1 with w0 the long Weyl group element. There is a similar formula for conjecturally satisfied if Pu,v = 1. This leads to various combinatorial conjectures.


Sign in / Sign up

Export Citation Format

Share Document