Curing reaction kinetics of epoxy resin using dicyandiamide modified by aromatic amines

2007 ◽  
Vol 12 (6) ◽  
pp. 1105-1108 ◽  
Author(s):  
Lianxi Chen ◽  
Hua Tian ◽  
Quanwen Liu ◽  
Jun Wang
2012 ◽  
Vol 127 (3) ◽  
pp. 1895-1900 ◽  
Author(s):  
Libang Feng ◽  
Yulong Wang ◽  
Yanping Wang ◽  
Hao Liu ◽  
Jianchang Zhao

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1266
Author(s):  
Xing Zhang ◽  
Yucun Liu ◽  
Tao Chai ◽  
Zhongliang Ma ◽  
Kanghui Jia

In this research, differential scanning calorimetry (DSC) was employed to compare the curing reaction kinetics of the epoxidized hydroxyl terminated polybutadiene-isophorone diisocyanate (EHTPB-IPDI) and hydroxyl terminated polybutadiene-isophorone diisocyanate (HTPB-IPDI) binder systems. Glass transition temperature (Tg) and mechanical properties of the EHTPB-IPDI and HTPB-IPDI binder systems were determined using the DSC method and a universal testing machine, respectively. For the EHTPB-IPDI binder system, the change of viscosity during the curing process in the presence of dibutyltin silicate (DBTDL) and tin 2-ethylhexanoate (TECH) catalysts was studied, and the activation energy was estimated. The results show that the activation energies (Ea) of the curing reaction of the EHTPB-IPDI and HTPB-IPDI binder systems are 53.8 and 59.1 kJ·mol−1, respectively. While their average initial curing temperatures of the two systems are 178.2 and 189.5 °C, respectively. The EHTPB-IPDI binder system exhibits a higher reactivity. Compared with the HTPB-IPDI binder system, the Tg of the EHTPB-IPDI binder system is increased by 5 °C. Its tensile strength and tear strength are increased by 12% and 17%, respectively, while its elongation at break is reduced by 10%. Epoxy groups and isocyanates react to form oxazolidinones, thereby improving the mechanical properties and thermal stability of polyurethane materials. These differences indicate that the EHTPB-IPDI binder system has better thermal stability and mechanical properties. During the EHTPB-IPDI binder system’s curing process, the DBTDL catalyst may ensure a higher viscosity growth rate, indicating a better catalytic effect, consistent with the prediction results obtained using the non-isothermal kinetic analysis method.


Polimery ◽  
2006 ◽  
Vol 51 (03) ◽  
pp. 199-205 ◽  
Author(s):  
CONSTANTIN N. CASCAVAL ◽  
DAN ROSU ◽  
ALICE MITITELU-MIJA ◽  
LILIANA ROSU

2019 ◽  
Vol 25 (4) ◽  
pp. 478-484
Author(s):  
Haoqing XU ◽  
Yuan FANG ◽  
Aizhao ZHOU ◽  
Pengming JIANG ◽  
Shi SHU ◽  
...  

Epoxy resin insulation paint was prepared with epoxy resin (E44) as binder and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by the differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was investigated by using the phenomenological method, and the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determined. The curing reaction mechanism of paint was ascertained by the dynamic temperature DSC method and IR spectroscopy (FTIR) method. The results show that the Kamal model can be used to describe the curing kinetics of epoxy resin paint, and the total reaction orders increase from 1.30 to 2.14. The two rate constants increase with the increase of the curing temperature. The activation energy is 90.5832 kJ/mol and 68.3733 kJ/mol respectively, and the pre-exponential factors are 6.521 × 1015 s-1 and 6.3807 × 109 s-1. The curing reaction of paint consists of two steps: the first step is the addition reaction of epoxy group and primary amine or secondary amine; the second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl. Epoxy resin insulation paint was prepared with epoxy resin (E44) as binders and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was studied by using the phenomenological method, the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determind. The curing reaction mechanism of paint was ascertained by dynamic temperature DSC method and IR spectrogram (FTIR) method. The results show that the kamal model can be used to describe the curing kinetics of epoxy resin paint, the total reaction orders increase from 1.30 to 2.14. The results also show that the two rate constants increase with increasing curing temperature, The activation energies are 90.5832 kJ/mol and 68.3733 kJ/mol, and the pre-exponential factor are 6.521×1015 s-1 and 6.3807×109 s-1. The curing reaction of paint in two steps, the first step is the addition reaction of epoxy group and primary amine or secondary amine. The second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl.


2017 ◽  
Vol 131 (2) ◽  
pp. 1499-1507 ◽  
Author(s):  
Jiaxun Lyu ◽  
Dongdong Hu ◽  
Tao Liu ◽  
Ling Zhao

2008 ◽  
Vol 28 (3) ◽  
Author(s):  
Ε. Diaz ◽  
S. Anasagasti ◽  
J. González

Sign in / Sign up

Export Citation Format

Share Document