scholarly journals An experimental-numeric approach to manufacture semiconductor wafer using thick copper front metallization

Author(s):  
Michele Calabretta ◽  
Alessandro Sitta ◽  
Salvatore Massimo Oliveri ◽  
Gaetano Sequenzia

Abstract The presented work investigates about the deformation of semiconductor device induced by electrochemical deposited thick copper films. It enhances thermal and electric performances allowing to use copper interconnections without formations of intermetallic layers at the interfaces with consequent reliability improvement. Nevertheless, the induced deformation strongly affects manufacturability, criticizing the integration between different process steps. Experiment based on phase-shift Moiré principle has been performed to better understand the relation between warpage and temperature. Finite element model has been developed to reproduce the phenomenon in order to address the design and the process integration optimizing workability, electrical performances and reliability.

1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document