Assessment of Antioxidant and Antimicrobial Properties of Lignin from Corn Stover Residue Pretreated with Low-Moisture Anhydrous Ammonia and Enzymatic Hydrolysis Process

2017 ◽  
Vol 184 (1) ◽  
pp. 350-365 ◽  
Author(s):  
Mingming Guo ◽  
Tony Jin ◽  
Nhuan P. Nghiem ◽  
Xuetong Fan ◽  
Phoebe X. Qi ◽  
...  
2021 ◽  
Author(s):  
Yanwen Wu ◽  
Haipeng Guo ◽  
Md. Shafiqur Rahman ◽  
Xuantong Chen ◽  
Jinchi Zhang ◽  
...  

Abstract The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses largely depends on an effective pretreatment process. A significant enhancement of enzymatic saccharification was obtained with corn stover using Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline resistant xylanase produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36–9.68. However, after 20 d pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U g− 1 of commercial cellulase, the yield of reducing sugar released from 20 d pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanwen Wu ◽  
Haipeng Guo ◽  
Md. Shafiqur Rahman ◽  
Xuantong Chen ◽  
Jinchi Zhang ◽  
...  

AbstractThe biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36–9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

2021 ◽  
pp. 0734242X2110291
Author(s):  
Benjamin Piribauer ◽  
Andreas Bartl ◽  
Wolfgang Ipsmiller

Recently, textiles and their end-of-life management have become the focus of public and political attention. In the European Union the revised waste framework directive defines textiles as municipal waste and stipulates their separate collection by 2025. In the context of these developments, this paper summarises briefly the current state-of-the-art in textile recycling. It is evident that recycling methods are not yet fully developed. This is especially the case with multi-material textiles, which are composed of two or more polymers that are incompatible for recycling. In the practical part of the communication, results are presented which show that enzymatic hydrolysis is a suitable process for recycling textiles made of cotton and polyester. After a complete removal of cotton, the remaining pure polyester fibres undergo a re-granulation and post-condensation step. The so obtained recycled polyester is fed back into the textile processing chain and finally towels are obtained. The main steering parameters of the enzymatic hydrolysis process are described. The study proves that solutions in accordance with the Circular Economy in the textile sector are available but an industrial implementation has not yet been realised.


2019 ◽  
Vol 11 (11) ◽  
pp. 5847-5856 ◽  
Author(s):  
Ju Chen ◽  
Kokou Adjallé ◽  
Thanh Tung Lai ◽  
Simon Barnabé ◽  
Michel Perrier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document