Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number

2018 ◽  
Vol 188 (2) ◽  
pp. 436-449 ◽  
Author(s):  
Mingyang Jiang ◽  
Guochao Xu ◽  
Jie Ni ◽  
Kai Zhang ◽  
Jinjun Dong ◽  
...  
2006 ◽  
Vol 188 (6) ◽  
pp. 2198-2206 ◽  
Author(s):  
Wout A. M. Wolken ◽  
Patrick M. Lucas ◽  
Aline Lonvaud-Funel ◽  
Juke S. Lolkema

ABSTRACT The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L. brevis was expressed in Lactococcus lactis and functionally characterized using right-side-out membranes. The transporter very efficiently catalyzes homologous tyrosine-tyrosine exchange and heterologous exchange between tyrosine and its decarboxylation product tyramine. Tyrosine-tyramine exchange was shown to be electrogenic. In addition to the exchange mode, the transporter catalyzes tyrosine uniport but at a much lower rate. Analysis of the substrate specificity of the transporter by use of a set of 19 different tyrosine substrate analogues showed that the main interactions between the protein and the substrates involve the amino group and the phenyl ring with the para hydroxyl group. The carboxylate group that is removed in the decarboxylation reaction does not seem to contribute to the affinity of the protein for the substrates significantly. The properties of the TyrP protein are those typical for precursor-product exchangers that operate in proton motive decarboxylation pathways. It is proposed that tyrosine decarboxylation in L. brevis results in proton motive force generation by an indirect proton pumping mechanism.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 434 ◽  
Author(s):  
Alessandra Pucci ◽  
Gianluigi Albano ◽  
Matteo Pollastrini ◽  
Antonio Lucci ◽  
Marialuigia Colalillo ◽  
...  

The lack of supported versions of the tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ligand, suitable for flow-chemistry applications at scale, prompted us to develop a new route for the immobilization of such tris-triazole chelating units on highly cross-linked polystyrene resins. With this aim, the preparation of the known TBTA-type monomer 3 was optimized to develop a high-yield synthetic sequence, devoid of chromatographic purifications at any stage. Then, bead-type (P7) and monolithic (M7) functional resins were obtained by the easy and scalable suspension- or mold-copolymerization of 3 with divinylbenzene. Both types of materials were found to possess a highly porous morphology and specific surface area in the dry state and could be charged with substantial amounts of Cu(I) or Cu(II) salts. After treatment of the latter with a proper reducing agent, the corresponding supported Cu(I) complexes were tested in the copper-catalyzed alkyne-azide cycloaddition reaction (CuAAC). The immobilized catalysts proved active at room temperature and, in batch and with catalyst loadings as low as 0.6 mol%, afforded quantitative conversions within 20 h. Independent of the alkyne structure, extended use of the supported catalyst in flow was also possible. In the reaction of benzylazide and propargyl alcohol, this allowed a total turnover number larger than 400 to be reached.


2020 ◽  
Author(s):  
Shiny Joseph Srinivasan ◽  
Sarah Cleary ◽  
Caroline Paul ◽  
Miguel A. Ramirez ◽  
Kylie Vincent

<p>Robust [NiFe] hydrogenase 1 (Hyd1) from <i>Escherichia coli</i> is shown to have non-native, H<sub>2</sub>-dependent activity for FMN and FAD reduction, and to function as a promising recycling system for FMNH<sub>2</sub> supply to flavoenzymes for chemical synthesis, giving a total turnover number over 10 million when coupled with an Old Yellow Enzyme ene reductase. </p>


Author(s):  
K. Seelbach ◽  
M. P. J. van Deurzen ◽  
F. van Rantwijk ◽  
R. A. Sheldon ◽  
U. Kragl

2020 ◽  
Author(s):  
Shiny Joseph Srinivasan ◽  
Sarah Cleary ◽  
Caroline Paul ◽  
Miguel A. Ramirez ◽  
Kylie Vincent

<p>Robust [NiFe] hydrogenase 1 (Hyd1) from <i>Escherichia coli</i> is shown to have non-native, H<sub>2</sub>-dependent activity for FMN and FAD reduction, and to function as a promising recycling system for FMNH<sub>2</sub> supply to flavoenzymes for chemical synthesis, giving a total turnover number over 10 thousand when coupled with an Old Yellow Enzyme ene reductase. </p>


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3573 ◽  
Author(s):  
Mafalda Dias Gomes ◽  
John M. Woodley

As biocatalysis matures, it becomes increasingly important to establish methods with which to measure biocatalyst performance. Such measurements are important to assess immobilization strategies, different operating modes, and reactor configurations, aside from comparing protein engineered variants and benchmarking against economic targets. While conventional measurement techniques focus on a single performance metric (such as the total turnover number), here, it is argued that three metrics (achievable product concentration, productivity, and enzyme stability) are required for an accurate assessment of scalability.


Sign in / Sign up

Export Citation Format

Share Document