DNA Damage and Decreased DNA Repair in Peripheral Blood Mononuclear Cells in Individuals Exposed to Arsenic and Lead in a Mining Site

2011 ◽  
Vol 146 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Yolanda Jasso-Pineda ◽  
Fernando Díaz-Barriga ◽  
Jaqueline Calderón ◽  
Leticia Yáñez ◽  
Leticia Carrizales ◽  
...  
Author(s):  
S. Schumann ◽  
U. Eberlein ◽  
C. Lapa ◽  
J. Müller ◽  
S. Serfling ◽  
...  

Abstract Purpose One therapy option for prostate cancer patients with bone metastases is the use of [223Ra]RaCl2. The α-emitter 223Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [223Ra]RaCl2. Methods Multiple blood samples from nine prostate cancer patients were collected before and after administration of [223Ra]RaCl2, up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs. Results The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h – 4 weeks after administration), the α-track frequency remained elevated. Conclusion The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry.


Author(s):  
Larissa Ragozo Cardoso de Oliveira ◽  
Eliana Peresi ◽  
Francilene Capel Tavares ◽  
Camila Renata Corrêa ◽  
Damiana Tortolero Pierine ◽  
...  

2019 ◽  
Vol 8 (6) ◽  
pp. 896-907 ◽  
Author(s):  
Magdalena Kluska ◽  
Michał Juszczak ◽  
Daniel Wysokiński ◽  
Jerzy Żuchowski ◽  
Anna Stochmal ◽  
...  

Abstract Bioactive compounds isolated from plants are considered to be attractive candidates for cancer therapy. In this study, we examined the effect of kaempferol, its derivatives, the polyphenol fraction (PF) and an extract (EX) isolated from the aerial parts of Lens culinaris Medik. on DNA damage induced by etoposide in human cells. We also studied the effect of these compounds and their combinations on cell viability. The studies were conducted on HL-60 cells and human peripheral blood mononuclear cells (PBMCs). We used the comet assay in the alkaline version to evaluate DNA damage. To examine cell viability we applied the trypan blue exclusion assay. We demonstrated that kaempferol glycoside derivatives isolated from the aerial parts of Lens culinaris Medik. reduce DNA damage induced by etoposide in PBMCs, but do not have an impact on DNA damage in HL-60 cells. We also showed that kaempferol induces DNA damage in HL-60 cells and leads to an increase of DNA damage provoked by etoposide. Our data suggest that kaempferol derivatives can be further explored as a potential agent protecting normal cells against DNA damage induced by etoposide. Moreover, kaempferol's ability to induce DNA damage in cancer cells and to increase DNA damage caused by etoposide may be useful in designing and improving anticancer therapies.


2019 ◽  
Vol 38 (6) ◽  
pp. 724-733 ◽  
Author(s):  
Karol Bukowski ◽  
Daniel Wysokinski ◽  
Katarzyna Mokra ◽  
Katarzyna Wozniak

Phosphorus flame retardants are a group of chemicals that are used to slow or prevent the spread of fire. These compounds have been detected in different environments including human organism. In the present study, we have investigated DNA-damaging potential and effect on DNA methylation of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) in human peripheral blood mononuclear cells (PBMCs). In order to determine DNA damage and repair, the alkaline and neutral versions of the comet assay were used. The level of DNA methylation was determined with specific antibodies against methylated DNA. PBMCs were exposed to TCEP and TCPP at the concentrations in the range of 1–1000 µM for 24 h. We have observed that TCEP and TCPP induced DNA damage—DNA breaks and alkali-labile sites. All DNA damages were effectively repaired during 120-min repair incubation. The results have also shown that TCEP and TCPP decreased the level of DNA methylation in PBMCs. In the case of TCEP, this effect was observed at a very low concentration of 1 µM.


Sign in / Sign up

Export Citation Format

Share Document