Selenium Deficiency Induces Apoptosis, Mitochondrial Dynamic Imbalance, and Inflammatory Responses in Calf Liver

Author(s):  
Shuang Wang ◽  
Xingyao Liu ◽  
Lei Lei ◽  
Dong Wang ◽  
Yun Liu
2020 ◽  
Vol 236 (1) ◽  
pp. 222-234
Author(s):  
Yuan Zhang ◽  
Jiuli Zhang ◽  
Jun Bao ◽  
Chaohua Tang ◽  
Ziwei Zhang

2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document