Effect of Nigella sativa Supplementation to Exercise Training in a Novel Model of Physiological Cardiac Hypertrophy

2014 ◽  
Vol 14 (3) ◽  
pp. 243-250 ◽  
Author(s):  
L. I. Al-Asoom ◽  
B. A. Al-Shaikh ◽  
A. O. Bamosa ◽  
M. N. El-Bahai
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lubna Ibrahim Al Asoom

Background. In our lab, we demonstrated cardiac hypertrophy induced by long-term administration of Nigella sativa (Ns) with enhanced function. Therefore, we aim to investigate the molecular mechanisms of Ns-induced cardiac hypertrophy, compare it with that induced by exercise training, and explore any possible synergistic effect of these two interventions. Method. Twenty adult Wistar male rats were divided into control (C), Ns-fed (N.s.), exercise-trained (Ex.), Ns-fed exercise-trained (N.s.Ex.) groups. 800 mg/kg of Ns was administered orally to N.s. rats. Ex. rats were trained on a treadmill with speed 18 m/min and grade 32° for two hours daily, and the N.s.Ex. group underwent both interventions. After 8 weeks, Immunohistochemical slides of the left ventricles were prepared using rat growth hormone (GH), insulin-like growth factor I (IGF-I), angiotensin-II receptors 1 (AT-I), endothelin-I (ET-1), Akt-1, and Erk-1. Cell diameter and number of nuclei were measured. Results. Cardiomyocyte diameter, number of nuclei, GH, and Akt were significantly higher in N.s, Ex., and N.s.Ex groups compared with the controls. IGF-I, AT-1, and ET-1 were significantly higher in Ex. rats only compared with the controls. Erk-1 was lower in N.s., Ex., and N.s.Ex. compared with the controls. Conclusion. We can conclude that Ns-induced cardiac hypertrophy is mediated by the GH-IGF I-PI3P-Akt pathway. Supplementation of Ns to exercise training protocol can block the upregulation of AT-I and ET-1. The combined N.s. exercise-induced cardiac hypertrophy might be a superior model of physiological cardiac hypertrophy and be used as a prophylactic therapy for athletes who are engaged in vigorous exercise activity.


2018 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Behrouz Baghaiee ◽  
Marefat Siahkouhian ◽  
Pouran Karimi ◽  
Ana Maria Botelho Teixeira ◽  
Saeed Dabagh Nikoo Kheslat ◽  
...  

2016 ◽  
Vol 110 (2) ◽  
pp. 258-267 ◽  
Author(s):  
Zhenhua Li ◽  
Lantao Liu ◽  
Ning Hou ◽  
Yao Song ◽  
Xiangbo An ◽  
...  

2021 ◽  
Vol 87 ◽  
pp. 108522
Author(s):  
Karen Lambert ◽  
Marie Demion ◽  
Jean-Christophe Lagacé ◽  
Marie Hokayem ◽  
Mamta Dass ◽  
...  

2013 ◽  
Vol 305 (1) ◽  
pp. H124-H134 ◽  
Author(s):  
Tamás Radovits ◽  
Attila Oláh ◽  
Árpád Lux ◽  
Balázs Tamás Németh ◽  
László Hidi ◽  
...  

Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/μl) and improved LV active relaxation (τ: 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.


2018 ◽  
Vol 132 (3) ◽  
pp. 381-397 ◽  
Author(s):  
Bianca C. Bernardo ◽  
Kate L. Weeks ◽  
Thawin Pongsukwechkul ◽  
Xiaoming Gao ◽  
Helen Kiriazis ◽  
...  

We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown. To examine the role of MCAD in the heart and to assess the therapeutic potential of increasing MCAD in the failing heart, we developed a gene therapy tool using recombinant adeno-associated viral vectors (rAAV) encoding MCAD. We hypothesised that increasing MCAD expression may recapitulate the cardioprotective properties of PI3K(p110α). rAAV6:MCAD or rAAV6:control was delivered to healthy adult mice and to mice with pre-existing pathological hypertrophy and cardiac dysfunction due to transverse aortic constriction (TAC). In healthy mice, rAAV6:MCAD induced physiological hypertrophy (increase in heart size, normal systolic function and increased capillary density). In response to TAC (~15 weeks), heart weight/tibia length increased by ~60% in control mice and ~45% in rAAV6:MCAD mice compared with sham. This was associated with an increase in cardiomyocyte cross-sectional area in both TAC groups which was similar. However, hypertrophy in TAC rAAV6:MCAD mice was associated with less fibrosis, a trend for increased capillary density and a more favourable molecular profile compared with TAC rAAV6:control mice. In summary, MCAD induced physiological cardiac hypertrophy in healthy adult mice and attenuated features of pathological remodelling in a cardiac disease model.


2004 ◽  
Vol 22 (Suppl. 1) ◽  
pp. S72-S73 ◽  
Author(s):  
F S Zamo ◽  
E M Oliveira ◽  
E M Krieger ◽  
M C Irigoyen

2013 ◽  
Vol 99 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Monica M. Montano ◽  
Candida L. Desjardins ◽  
Yong Qui Doughman ◽  
Yee-Hsee Hsieh ◽  
Yanduan Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document