scholarly journals A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience

2021 ◽  
Author(s):  
João P. G. Santos ◽  
Kadri Pajo ◽  
Daniel Trpevski ◽  
Andrey Stepaniuk ◽  
Olivia Eriksson ◽  
...  

AbstractNeuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale of biochemical pathways, which is one of the main objects of study in systems biology. While systems biology is among the more standardized fields, conversion between different model formats and interoperability between various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical pathway models, using pre-existing tools that could be utilized for the storage and refinement of models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a single file and provides a human readable set of syntax rules. Next, we implemented custom-made MATLAB® scripts to perform parameter estimation and global sensitivity analysis used in model refinement. Additionally, we have developed a web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed single neuron model by running multiscale simulations in NEURON. Using this workflow, we can simulate the same model in three different simulators, with a smooth conversion between the different model formats, enhancing the characterization of different aspects of the model.

2020 ◽  
Author(s):  
João P.G. Santos ◽  
Kadri Pajo ◽  
Daniel Trpevski ◽  
Andrey Stepaniuk ◽  
Olivia Eriksson ◽  
...  

AbstractNeuroscience incorporates knowledge from a range of scales from molecular dynamics to neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a variety of different software tools in the model building and analysis process. Systems biology, for instance, is among the more standardized fields. However, conversion between different model formats and interoperability between various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical pathway models using pre-existing tools that could be utilized for the storage and refinement of models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a single file and provides a human readable set of syntax rules. Next, we implement custom-made MATLAB® scripts to perform parameter estimation and sensitivity analysis used in model refinement. Additionally, we have developed a web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed single neuron model by running multiscale simulations in NEURON. By this we can simulate the same model in three principally different simulators, describing different aspects of the system, and with a smooth conversion between the different model formats.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1830
Author(s):  
Takahiro G. Yamada ◽  
Kaito Ii ◽  
Matthias König ◽  
Martina Feierabend ◽  
Andreas Dräger ◽  
...  

In systems biology, biological phenomena are often modeled by Ordinary Differential Equations (ODEs) and distributed in the de facto standard file format SBML. The primary analyses performed with such models are dynamic simulation, steady-state analysis, and parameter estimation. These methodologies are mathematically formalized, and libraries for such analyses have been published. Several tools exist to create, simulate, or visualize models encoded in SBML. However, setting up and establishing analysis environments is a crucial hurdle for non-modelers. Therefore, easy access to perform fundamental analyses of ODE models is a significant challenge. We developed SBMLWebApp, a web-based service to execute SBML-based simulation, steady-state analysis, and parameter estimation directly in the browser without the need for any setup or prior knowledge to address this issue. SBMLWebApp visualizes the result and numerical table of each analysis and provides a download of the results. SBMLWebApp allows users to select and analyze SBML models directly from the BioModels Database. Taken together, SBMLWebApp provides barrier-free access to an SBML analysis environment for simulation, steady-state analysis, and parameter estimation for SBML models. SBMLWebApp is implemented in Java™ based on an Apache Tomcat® web server using COPASI, the Systems Biology Simulation Core Library (SBSCL), and LibSBMLSim as simulation engines. SBMLWebApp is licensed under MIT with source code freely available. At the end of this article, the Data Availability Statement gives the internet links to the two websites to find the source code and run the program online.


Author(s):  
Takahiro G. Yamada ◽  
Kaito Ii ◽  
Matthias König ◽  
Martina Feierabend ◽  
Andreas Dräger ◽  
...  

In systems biology, biological phenomena are often modeled by ODE and distributed in the de facto standard file format SBML. The primary analyses performed with such models are dynamic simulation, steady-state analysis, and parameter estimation. These methodologies are mathematically formalized, and libraries for such analyses have been published. Several tools exist to create, simulate, or visualize models encoded in SBML. However, setting up and establishing analysis environments is a crucial hurdle for non-modelers. Therefore, easy access to perform fundamental analyses of ODE models is a significant challenge. We developed SBMLWebApp, a web-based service to execute SBML-based simulations, steady-state analysis, and parameter estimation directly in the browser without the need for any setup or prior knowledge to address this issue. SBMLWebApp visualizes the result and numerical table of each analysis and provides a download of the results. SBMLWebApp allows users to select and analyze SBML models directly from the BioModels Database. Taken together, SBMLWebApp provides barrier-free access to an SBML analysis environment for simulation, steady-state analysis, and parameter estimation for SBML models. SBMLWebApp is implemented in Java™ based on an Apache Tomcat® web server using COPASI, the SBSCL, and LibSBMLSim as simulation engines. SBMLWebApp is licensed under MIT with source code available from https://github.com/TakahiroYamada/SBMLWebApp. The program runs online at http://simulate-biology.org.


2019 ◽  
Author(s):  
J Kyle Medley ◽  
Joseph Hellerstein ◽  
Herbert M Sauro

The SBML standard is used in a number of online repositories for storing systems biology models, yet there is currently no Web–capable JavaScript library that can read and write the SBML format. This is a severe limitation since the Web has become a universal means of software distribution, and the graphical capabilities of modern web browsers offer a powerful means for building rich, interactive applications. Also, there is a growing developer population specialized in web technologies that is poised to take advantage of the universality of the web to build the next generation of tools in systems biology and other fields. However, current solutions require server– side processing in order to support existing standards in modeling. We present libsbmljs, a JavaScript / WebAssembly library for Node.js and the Web with full support for all SBML extensions. Our library is an enabling technology for online SBML editors, model–building tools, and web–based simulators, and runs entirely in the browser without the need for any dedicated server resources. We provide NPM packages, an extensive set of examples, JavaScript API documentation, and an online demo that allows users to read and validate the SBML content of any model in the BioModels and BiGG databases. We also provide instructions and scripts to allow users to build a copy of libsbmljs against any libSBML version. Although our library supports all existing SBML extensions, we cover how to add additional extensions to the wrapper, should any arise in the future. To demonstrate the utility of this implementation, we also provide a demo at https://libsbmljsdemo.github.io/ with a proof–of–concept SBML simulator that supports ODE and stochastic simulations for SBML core models. Our project is hosted at https://libsbmljs.github.io/, which contains links to examples, API documentation, and all source code files and build scripts used to create libsbmljs. Our source code is licensed under the Apache 2.0 open source license.


2020 ◽  
Vol 36 (16) ◽  
pp. 4527-4529
Author(s):  
Ales Saska ◽  
David Tichy ◽  
Robert Moore ◽  
Achilles Rasquinha ◽  
Caner Akdas ◽  
...  

Abstract Summary Visualizing a network provides a concise and practical understanding of the information it represents. Open-source web-based libraries help accelerate the creation of biologically based networks and their use. ccNetViz is an open-source, high speed and lightweight JavaScript library for visualization of large and complex networks. It implements customization and analytical features for easy network interpretation. These features include edge and node animations, which illustrate the flow of information through a network as well as node statistics. Properties can be defined a priori or dynamically imported from models and simulations. ccNetViz is thus a network visualization library particularly suited for systems biology. Availability and implementation The ccNetViz library, demos and documentation are freely available at http://helikarlab.github.io/ccNetViz/. Supplementary information Supplementary data are available at Bioinformatics online.


2006 ◽  
Vol 36 (9) ◽  
pp. 1575-1582 ◽  
Author(s):  
Vicente Navarro ◽  
Ángel Yustres ◽  
Luís Cea ◽  
Miguel Candel ◽  
Ricardo Juncosa ◽  
...  

2015 ◽  
Vol 655 ◽  
pp. 012048 ◽  
Author(s):  
L Calabrese ◽  
F Bozzoli ◽  
G Bochicchio ◽  
B Tessadri ◽  
P Vocale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document