New energy from turbulent convection on mass loss in the RGB and EAGB stars

2022 ◽  
Vol 43 (1) ◽  
Author(s):  
XIANG-JUN LAI ◽  
LING-LING CAO
Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
M.E. Cantino ◽  
M.K. Goddard ◽  
L.E. Wilkinson ◽  
D.E. Johnson

Quantification in biological x-ray microanalysis depends on accurate evaluation of mass loss. Although several studies have addressed the problem of electron beam induced mass loss from organic samples (eg., 1,2). uncertainty persists as to the dose dependence, the extent of loss, the elemental constituents affected, and the variation in loss for different materials and tissues. in the work described here, we used x-ray counting rate changes to measure mass loss in albumin (used as a quantification standard), salivary gland, and muscle.In order to measure mass loss at low doses (10-4 coul/cm2 ) large samples were needed. While freeze-dried salivary gland sections of the required dimensions were available, muscle sections of this size were difficult to obtain. To simulate large muscle sections, frog or rat muscle homogenate was injected between formvar films which were then stretched over slot grids and freeze-dried. Albumin samples were prepared by a similar procedure. using a solution of bovine serum albumin in water. Samples were irradiated in the STEM mode of a JEOL 100C.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


CICTP 2019 ◽  
2019 ◽  
Author(s):  
Xueran Wang ◽  
Mo Zhang ◽  
Wenfeng Liu ◽  
Chuna Wu

Author(s):  
Menghan TAO ◽  
Ning XIAO ◽  
Xingfu ZHAO ◽  
Wenbin LIU

New energy vehicles(NEV) as a new thing for sustainable development, in China, on the one hand has faced the rapid expansion of the market; the other hand, for the new NEV users, the current NEVs cannot keep up with the degree of innovation. This paper demonstrates the reasons for the existence of this systematic challenge, and puts forward the method of UX research which is different from the traditional petrol vehicles research in the early stage of development, which studies from the user's essence level, to form the innovative product programs which meet the needs of users and being real attractive.


2010 ◽  
Vol 130 (6) ◽  
pp. 336-339
Author(s):  
Masayuki YODA ◽  
Kazuto YUKITA ◽  
Yuki OHSHIMA ◽  
Kiyonori BAN ◽  
Maki FUJINAGA

2009 ◽  
Vol 129 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jiro Sumita ◽  
Kojiro Nishioka ◽  
Yasuhiro Noro ◽  
Yozo Ito ◽  
Masanori Yabuki ◽  
...  

Author(s):  
Muneer Bani Yassein ◽  
Yaser Khamayseh ◽  
Ismail Hmeidi ◽  
Ahmed Al-Dubai ◽  
Mohammed Al-Maolegi

1998 ◽  
Vol 29 (4-5) ◽  
pp. 235-242
Author(s):  
B. P. Golovnya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document