Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India

2013 ◽  
Vol 38 (2) ◽  
pp. 251-258 ◽  
Author(s):  
Pratima Sharma ◽  
Shahzada Asad ◽  
Arif Ali
2000 ◽  
Vol 42 (7-8) ◽  
pp. 185-192 ◽  
Author(s):  
M. B. Alam ◽  
M. A. Sattar

The soil samples and tubewell waters were collected from 25 locations representing five thanas of four districts of Bangladesh. The soils were collected from three depths viz. 0–15, 15–30 and 30–45 cm and tubewell waters were collected from same locations. The arsenic content of soils and waters were detected by Molybdenum blue method. The arsenic content in soils ranged from 1.27–56.68, 3.18–54.77, 1.27–50.95, 1.27–39.48 and 3.18–35.66 ppm in Chapainawabganj Sadar, Kustia Sadar, Bera, Ishurdi and Sarishabari thanas, respectively. Out of a total of 25 samples arsenic was detectable for 18 samples at 0–15 cm, 17 samples at 15–30 cm and 15 samples at 30–45 cm depth. One sample at 0–15 cm, 7 samples at 15–30 cm and 4 samples at 30–45 cm depth were found to be slightly contaminated. In tubewell water the arsenic content measured from Chapainawabganj Sadar, Kustia Sadar, Bera, Ishurdi and Sarishabari thanas were ranged 0.010–0.056, 0.010–0.071, 0.010–0.056, 0.010–0.056 and 0.025–0.071 ppm, respectively. Out of 25 water samples 17 contained variable amounts of arsenic where 6 sampling sites contained arsenic levels above 0.05 ppm, and these sites are Rajarampur of Chapainawabganj Sadar thana, Jordaha of Bera thana, Courtpara of Kustia Sadar thana, Nalgari of Ishurdi thana and Ijarapara of Sarisabari thana. Arsenic contained in soils was positively correlated with arsenic content in waters.


2014 ◽  
Vol 2 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Rajib Kumar Shrestha ◽  
Dipak Regmi ◽  
Bhim P. Kafle

Ground water of southern part of Nepal, also known as Terai region where population density is relatively very high, has been contaminated with poisonous element Arsenic. This study has been carried out to determine variability of the level of arsenic contamination in groundwater with seasons of Pathkhauli village of Devgaun VDC and Mahuwa village of Manari VDC in Nawalparasi district, the western Terai district. Hydride Generation Atomic Absorption Spectrophotometer (HG-AAS) and UV-visible Spectrophotometry was used for analysis. Total 55 groundwater samples in post-monsoon season and 45 groundwater samples in pre-monsoon season were collected. The level of arsenic contamination in groundwater was found above the Nepal interim standard of 50 ppb. Of the total 42 water samples from each pre- and post- monsoon seasons analyzed, 28 water samples (67.67%) showed higher As-concentration in pre-monsoon season. DOI: http://dx.doi.org/10.3126/ijasbt.v2i1.9477   Int J Appl Sci Biotechnol, Vol 2(1): 59-63 


2016 ◽  
Vol 13 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Atia Akter ◽  
MY Mia ◽  
HM Zakir

The contamination of groundwater by arsenic (As) in Bangladesh is the largest poisoning of population in history, with millions of people exposed. Thirty (30) water samples were collected from 5 different Upazilas of Manikganj district in Bangladesh to determine the concentration of As as well as to assess the level of contamination. Concentrations of As in waters were within the range of 0.27 to 1.96; 0.43 to 5.09; trace to 6.69 mg L-1 at Singair, Harirampur and Ghior Upazila, respectively. But the concentration of As in waters both of Manikganj sadar and Shivalaya Upazila were trace. All surface and groundwater samples of Singair and Harirampur, and 4 groundwater samples of Ghior Upazila’s exceeded Bangladesh standard value for As concentration (0.05 mgL-1). The highest As concentration (6.69 mgL-1) was found in groundwater of Baliakhora village of Ghior upazila in Manikganj district. The cation chemistry indicated that among 30 water samples, 15 showed dominance sequence as Mg2+ > Ca2+ > Na+ > K+ and 14 samples as Ca2+ > Mg2+ > Na+ > K+. On the other hand, the dominant anion in water samples was Cl- followed by HCO3- and SO42-. Highly significant positive correlations were found in between the concentrations of As and SO42-(r=712**),and As and Ca2+ (r=581*), suggesting similar sources and/or similar geochemical processes controlling the occurrence of these ions in waters.J. Bangladesh Agril. Univ. 13(1): 47-54, June 2015


Author(s):  
Glenda De Filippis ◽  
Bruno Costa ◽  
Simone Borges ◽  
Waldomiro Borges Neto ◽  
Nivia Maria Coelho ◽  
...  

Arsenic contamination is worrisome in mineral exploration regions. Efficient arsenic monitoring is dependent on detectability at trace level in environmental matrices. This paper presents a procedure to evaluate the occurrence of arsenic in environmental sediment and water samples collected from a mining area in Catalão, Goiás State (GO), Brazil. The water and sediment samples were analyzed by graphite furnace atomic absorption spectrometry (GF AAS) after appropriate chemical treatment. For the arsenic determination, analytical performance was improved employing multivariate tools. The instrumental conditions were optimized using a 23 factorial design and the response surface methodology (RSM) was applied with a central composite design (CCD). Iridium was used as a permanent modifier. The results for the sediment samples showed arsenic concentrations below the threshold for adverse effects ranging from 2.06 to 3.82 mg Kg-1. The concentrations in water samples were below LOD. The LOD and LOQ were, respectively, 0.33 and 1.09 µg L-1 to water and digested sediment samples. Under the optimal conditions, the dynamic working range was linear of LOQ to 50.0 µg L-1. The method was applied to determine concentrations of arsenic in water and sediments collected from mining sites, which can be used to assess the availability of arsenic in the region.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
O. Mudroch ◽  
J. R. Kramer

Approximately 60,000 tons per day of waste from taconite mining, tailing, are added to the west arm of Lake Superior at Silver Bay. Tailings contain nearly the same amount of quartz and amphibole asbestos, cummingtonite and actinolite in fibrous form. Cummingtonite fibres from 0.01μm in length have been found in the water supply for Minnesota municipalities.The purpose of the research work was to develop a method for asbestos fibre counts and identification in water and apply it for the enumeration of fibres in water samples collected(a) at various stations in Lake Superior at two depth: lm and at the bottom.(b) from various rivers in Lake Superior Drainage Basin.


2006 ◽  
Vol 133 ◽  
pp. 1093-1095 ◽  
Author(s):  
E. Henry ◽  
S. Brygoo ◽  
P. Loubeyre ◽  
M. Koenig ◽  
A. Benuzzi-Mounaix ◽  
...  
Keyword(s):  

2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


Sign in / Sign up

Export Citation Format

Share Document