Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera

2016 ◽  
Vol 95 (3) ◽  
pp. 515-526 ◽  
Author(s):  
HUI CAO ◽  
CAI-YUN LIU ◽  
CHUN-XIANG LIU ◽  
YUE-LING ZHAO ◽  
RUI-RUI XU
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11811
Author(s):  
Jun Xu ◽  
Ping Hu ◽  
Ye Tao ◽  
Puwen Song ◽  
Huanting Gao ◽  
...  

Background Wheat (Triticum aestivum) originated from three different diploid ancestral grass species and experienced two rounds of polyploidization. Exploring how certain wheat gene subfamilies have expanded during the evolutionary process is of great importance. The Lateral Organ Boundaries Domain (LBD) gene family encodes plant-specific transcription factors that share a highly conserved LOB domain and are prime candidates for this, as they are involved in plant growth, development, secondary metabolism and stress in various species. Methods Using a genome-wide analysis of high-quality polyploid wheat and related species genome sequences, a total of 228 LBD members from five Triticeae species were identified, and phylogenetic relationship analysis of LBD members classified them into two main classes (classes I and II) and seven subgroups (classes I a–e, II a and II b). Results The gene structure and motif composition analyses revealed that genes that had a closer phylogenetic relationship in the same subgroup also had a similar gene structure. Macrocollinearity and microcollinearity analyses of Triticeae species suggested that some LBD genes from wheat produced gene pairs across subgenomes of chromosomes 4A and 5A and that the complex evolutionary history of TaLBD4B-9 homologs was a combined result of chromosome translocation, polyploidization, gene loss and duplication events. Public RNA-seq data were used to analyze the expression patterns of wheat LBD genes in various tissues, different developmental stages and following abiotic and biotic stresses. Furthermore, qRT-PCR results suggested that some TaLBDs in class II responded to powdery mildew, regulated reproductive growth and were involved in embryo sac development in common wheat.


2002 ◽  
Vol 129 (2) ◽  
pp. 747-761 ◽  
Author(s):  
Bin Shuai ◽  
Cristina G. Reynaga-Peña ◽  
Patricia S. Springer

2014 ◽  
Vol 93 (1) ◽  
pp. 79-91 ◽  
Author(s):  
YUE-MIN ZHANG ◽  
SHI-ZHONG ZHANG ◽  
CHENG-CHAO ZHENG

2017 ◽  
Vol 16 (1) ◽  
pp. 124-136 ◽  
Author(s):  
Qiang Lu ◽  
Fenjuan Shao ◽  
Colleen Macmillan ◽  
Iain W. Wilson ◽  
Karen van der Merwe ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Bobo Song ◽  
Zikai Tang ◽  
Xiaolong Li ◽  
Jiaming Li ◽  
Mingyue Zhang ◽  
...  

Abstract Background The lateral organ boundaries domain (LBD) gene is a plant-specific transcription factor that plays a critical role in diverse biological processes. However, the evolution and functional divergence of the LBD gene family has not yet been characterized for the Chinese White Pear. Results In our study, a total of 60 PbrLBDs were identified in the pear genome. The PbrLBD gene family was divided into two classes based on gene structure and phylogenetic analysis: class I (53) and class II (7). Cis-acting element analysis results suggested that PbrLBDs may participate in various biological processes, such as flavonoid biosynthetic and stress response. Synteny analysis results indicated that segmental duplication played a key role in the expansion of the PbrLBD gene family. The mean Ks and 4DTv values showed that the PbrLBD gene family had undergone only one recent whole-genome duplication event occurring at 30–45 MYA. Purifying selection was a primary force during the PbrLBD gene family evolution process. Transcriptome data analysis revealed that 10 PbrLBDs were expressed in all six examined tissues, and 73.33% of members in the PbrLBD gene family were expressed in pear sepal. qRT-PCR was conducted to verify the expression levels of 11 PbrLBDs in these six tissues. Specifically, PbrLBD20, PbrLBD35 and PbrLBD53 genes were down-regulated when anthocyanin concentrations were high, whereas PbrLBD33 was significantly up-regulated in pear when anthocyanin concentrations were high. Furthermore, PbrLBD20, one of the candidate genes related to anthocyanins was localized in the nucleus. Conclusions Our analysis provides valuable information for understanding the evolution of the PbrLBD gene family, and provides new insights into the regulation of pear pigment metabolism and lays a foundation for the future disclosure of the molecular mechanism of LBD gene regulating flavonoid metabolism.


Sign in / Sign up

Export Citation Format

Share Document