Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers

2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Allo A. Dido ◽  
M. S. R. Krishna ◽  
Ermias Assefa ◽  
Dawit T. Degefu ◽  
B. J. K. Singh ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Ljiljana Brbaklić ◽  
Dragana Trkulja ◽  
Sanja Mikić ◽  
Milan Mirosavljević ◽  
Vojislava Momčilović ◽  
...  

Determination of genetic diversity and population structure of breeding material is an important prerequisite for discovering novel and valuable alleles aimed at crop improvement. This study’s main objective was to characterize genetic diversity and population structure of a collection representing a 40-year long historical period of barley (Hordeum vulgare L.) breeding, using microsatellites, pedigree, and phenotypic data. The set of 90 barley genotypes was phenotyped during three growing seasons and genotyped with 338 polymorphic alleles. The indicators of genetic diversity showed differentiation changes throughout the breeding periods. The population structure discriminated the breeding material into three distinctive groups. The principal coordinate analysis grouped the genotypes according to their growth habit and row type. An analysis of phenotypic variance (ANOVA) showed that almost all investigated traits varied significantly between row types, seasons, and breeding periods. A positive effect on yield progress during the 40-year long breeding period could be partly attributed to breeding for shorter plants, which reduced lodging and thus provided higher yield stability. The breeding material revealed a considerable diversity level based on microsatellite and phenotypic data without a tendency of genetic erosion throughout the breeding history and implied dynamic changes in genetic backgrounds, providing a great gene pool suitable for further barley improvement.


2014 ◽  
Vol 62 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Wei Hua ◽  
Xiaoqin Zhang ◽  
Jinghuan Zhu ◽  
Yi Shang ◽  
Junmei Wang ◽  
...  

2007 ◽  
Vol 54 (4) ◽  
pp. 749-758 ◽  
Author(s):  
A. Kolodinska Brantestam ◽  
R. von Bothmer ◽  
C. Dayteg ◽  
I. Rashal ◽  
S. Tuvesson ◽  
...  

2020 ◽  
Vol 7 (12) ◽  
pp. 144-161
Author(s):  
Allo A. Dido ◽  
◽  
Kassahun Tesfaye ◽  
M.S.R. Krishna ◽  
Dawit T. Degefu ◽  
...  

Landraces play a key role in crop breeding by providing beneficial trait for improvement of related crops and their genetic diversity studies are very important for breeding program and identification of parental lines. In this study, 585 barley (Hordeum vulgare L.) landraces collected from 13 agro-ecological zones of Ethiopia were evaluated along with 10 cultivars for their phenotypic diversity and population structure in relation to agronomic traits, resistance to major diseases and barley shoot fly. Data on 22 agronomic traits, three major diseases and barley shoot fly resistance-related traits were recorded. Univariate and multivariate approaches such as principal component and cluster analyses were applied to assess the genetic diversity and population structure. The analysis of variance indicated significant genotypic main, accessions x year and accession x environment interaction effects for almost all the traits evaluated. However, the accessions x environment interactions were mainly due to changes in magnitude rather than crossover types of interactions. The diversity analysis indicated that the population was highly structured according to kernel row-type, region (geographic) origin and altitude classes. Since the population is highly structured, appropriate statistical models will be needed when this population is used for association mapping studies. Eight principal components (PCs) in principal component analysis (PCA) accounted for the variation of 83.01%. The most related traits were included in the same PC, implying that results from PCA could give clues as to the relationship among traits. Though variability existed within and among clusters, useful germplasm clustered together. These materials are important sources of germplasm for the improvement of agronomic, disease and insect pest resistance traits. Keywords: Barley, diseases, genetic diversity, landraces, multivariate, shoot fly


2011 ◽  
Vol 23 (1) ◽  
pp. 3-13
Author(s):  
Sang Park ◽  
Dong Lee ◽  
Hyung-Jin Baek ◽  
Jeongran Lee ◽  
Muhammad Farooq

Study of the genetic diversity of Korean, Chinese and Japanese landraces of barley (Hordeum vulgareL.) using microsatellitesBarley (Hordeum vulgareL.) is one of important winter cereals in the world and has been the subject of numerous genetic investigations. Studies of its genetic diversity based on germplasm have a significant impact on crop breeding and conservation of genetic resources. This study was conducted to reveal the genetic diversity in barley landraces from Korean, Chinese and Japanese populations and evaluate the discrimination ability of SSR markers, distributed uniformly throughout the barley genome. Seven SSR primers were used to screen a set of 737 diverse barley landraces from Korea, China and Japan. The observed number of alleles per locus (Na), the effective number of alleles (Ne), and the mean gene diversity (He) were 11.14, 3.6245 and 0.7048, respectively. The number of alleles per locus was highest in Chinese landraces (8.9 alleles), followed by Korean (8.6) and Japanese (6.4). In this regard, HVKASI primer may be useful to distinguish Japanese landraces from others, as this unique allele was only detected at 175 bp in Japanese landraces. The average value of genetic distance was D=0.935. The largest genetic distance (D=1.209) among the three regional (representing each country in general) populations was found between Korean and Japanese populations. Based on the UPGMA dendrogram, four major groups can be distinguished at the similarity value of 0.43. The scatter plot showed overlapping in the central part amongst 3 groups of barley landraces. SSR markers are a powerful tool to examine functional diversity. Rich barley gene pool can be very useful for meeting current and future challenges in barley raising.


Sign in / Sign up

Export Citation Format

Share Document