De Novo Transcriptomics Analysis of the Floral Scent of Chinese Narcissus

2020 ◽  
Vol 13 (2) ◽  
pp. 172-188
Author(s):  
Yansen He ◽  
Min Xu ◽  
Xiaojing Chen
2021 ◽  
Author(s):  
Lei Shi ◽  
Yuan Shen ◽  
Yuhao Chi

Abstract Background Lonicera Japonica Thunb. is a perennial, semi-evergreen and twining vine in the family of Caprifoliaceae, which is widely cultivated in Asia. Thus far, L. japonica is often used to treat some human diseases including COVID-19, H1N1 influenza and hand-foot-and-mouth diseases, however, the regulatory mechanism of intrinsic physiological processes during different floral developmental stages of L. japonica remain largely unknown. Results The complete transcriptome of L. japonica was de novo-assembled and annotated, generating a total of 195850 unigenes, of which 84657 could be functionally annotated. 70 candidate genes involved in flowering transition were identified and the flowering regulatory network of five pathways was constructed in L. japonica. The mRNA transcripts of AGL24 and SOC1 exhibited a downward trend during flowering transition and followed by a gradual increase during the flower development. The transcripts of AP1 was only detected during the floral development, whereas the transcript level of FLC was high during the vegetative stages. The expression profiles of AGL24, SOC1, AP1 and FLC genes indicate that these key integrators might play the essential and evolutionarily conserved roles in control of flowering switch across the plant kingdom. We also identified 54 L. japonica genes encoding enzymes involved in terpenoid biosynthesis pathway. Most highly expressed genes centered on the MEP pathway, suggesting that this plastid pathway might represent the major pathway for terpenoid biosynthesis in L. japonica. In addition, 33 and 31 key genes encoding enzymes involved in the carotenogenesis and anthocyanin biosynthesis pathway were identified, respectively. PSY transcripts gradually increased during the flower development, supporting its role as the first rate-limiting enzyme in carotenoid skeleton production. The expression level of most anthocyanin biosynthetic genes was dramatically decreased during the flower developmental stages, consistent with the decline in the contents of anthocyanin. Conclusion These results identified a large number of potential key regulators controlling flowering time, flower color and floral scent formation in L. japonica, which improves our understanding of the molecular mechanisms underlying the flower traits and flower metabolism, as well as sets the groundwork for quality improvement and molecular breeding of L. japonica.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 67
Author(s):  
Ran Rosen ◽  
Galina Lebedev ◽  
Svetlana Kontsedalov ◽  
David Ben-Yakir ◽  
Murad Ghanim

The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip’s damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.


Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1360-1372 ◽  
Author(s):  
Mahsa Eshaghi ◽  
Behrouz Shiran ◽  
Hossein Fallahi ◽  
Rudabeh Ravash ◽  
Bojana Banović Đeri

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226752
Author(s):  
Chenghao Zhang ◽  
Baoyu Xu ◽  
Cheng-Ri Zhao ◽  
Junwei Sun ◽  
Qixian Lai ◽  
...  

Plant Methods ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Achala S Jayasena ◽  
David Secco ◽  
Kalia Bernath-Levin ◽  
Oliver Berkowitz ◽  
James Whelan ◽  
...  

2021 ◽  
Author(s):  
Zhi Zhou ◽  
Xie Bin ◽  
Bingshu He ◽  
Chen Zhang ◽  
Lulu Chen ◽  
...  

Different ecological environments affect the active ingredients and molecular content of medicinal plants. Artemisia rupestris L. is a kind of traditional medicinal plant, and the shortages of the wild resource have led to increased use of artificial varieties. However, there have few investigations referring to molecular differences between them in a systematic manner. In the present study, artificial and wild Artemisia rupestris L. plants were collected in the Altay-Fuyun region, Xinjian, China. Untargeted metabolomics method based on liquid chromatography-mass spectrometry (LC-MS) technology was applied to profile flower, stem, and leaf samples, respectively, and levels of a panel of representative known metabolites in this plant were simultaneously analyzed. The genetic basis of these samples was explored using a de novo transcriptomics approach to investigate differentially expressed genes (DEGs) and their pathway annotations. Results indicated metabolic differences between the two varieties mainly reflected in flavonoids and chlorogenic acid/caffeic acid derivatives. 34 chemical markers (CMs) belonging to these two structural categories were discovered after validation using another batch of samples, including 19 potentially new compounds. After correlation analysis, total of six DEGs in different organs relating to 24 CMs were confirmed using quantitative real-time PCR (qPCR). These findings provided novel insight into the molecular landscape of this medicinal plant through metabolomics-transcriptomics integration strategy, and reference information of its quality control and species identification.


2018 ◽  
Vol 31 (1) ◽  
pp. 637-651
Author(s):  
Wenjun Wang ◽  
Zonggen Shen ◽  
Xiutao Sun ◽  
Fuli Liu ◽  
Zhourui Liang ◽  
...  

2019 ◽  
Author(s):  
Kathy Darragh ◽  
Anna Orteu ◽  
Kelsey J. R. P. Byers ◽  
Daiane Szczerbowski ◽  
Ian A. Warren ◽  
...  

AbstractTerpenes, a group of structurally diverse compounds, are the biggest class of secondary metabolites. While the biosynthesis of terpenes by enzymes known as terpene synthases (TPSs) has been described in plants and microorganisms, few TPSs have been identified in insects, despite the presence of terpenes in multiple insect species. Indeed, in many insect species, it remains unclear whether terpenes are sequestered from plants or biosynthesised de novo. No homologs of plant TPSs have been found in insect genomes, though insect TPSs with an independent evolutionary origin have been found in Hemiptera and Coleoptera. In the butterfly Heliconius melpomene, the monoterpene (E)-β-ocimene acts as an anti-aphrodisiac pheromone, where it is transferred during mating from males to females to avoid re-mating by deterring males. To date only one insect monoterpene synthase has been described, in Ips pini (Coleoptera), and is a multifunctional TPS and isoprenyl diphosphate synthase (IDS). Here, we combine linkage mapping and expression studies to identify candidate genes involved in the biosynthesis of (E)-β-ocimene. We confirm that H. melpomene has two enzymes that exhibit TPS activity, and one of these, HMEL037106g1 is able to synthesise (E)-β-ocimene in vitro. Unlike the enzyme in Ips pini, these enzymes only exhibit residual IDS activity, suggesting they are more specialised TPSs, akin to those found in plants. Phylogenetic analysis shows that these enzymes are unrelated to previously described plant and insect TPSs. The distinct evolutionary origin of TPSs in Lepidoptera suggests that they have evolved multiple times in insects.Significance statementTerpenes are a diverse class of natural compounds, used by both plants and animals for a variety of functions, including chemical communication. In insects it is often unclear whether they are synthesised de novo or sequestered from plants. Some plants and insects have converged to use the same compounds. For instance, (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. We describe two novel terpene synthases, one of which synthesises (E)-β-ocimene in H. melpomene, unrelated not only to plant enzymes but also other recently identified insect terpene synthases. This provides the first evidence that the ability to synthesise terpenes has arisen multiple times independently within the insects.


Sign in / Sign up

Export Citation Format

Share Document