A novel 12-gene signature as independent prognostic model in stage IA and IB lung squamous cell carcinoma patients

Author(s):  
K. Wang ◽  
Y. Li ◽  
J. Wang ◽  
R. Chen ◽  
J. Li
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi-Fan Yang ◽  
Di Wu ◽  
Jian Wang ◽  
Li Ba ◽  
Chen Tian ◽  
...  

AbstractLung squamous cell carcinoma (LUSC) possesses a poor prognosis even for stages I–III resected patients. Reliable prognostic biomarkers that can stratify and predict clinical outcomes for stage I–III resected LUSC patients are urgently needed. Based on gene expression of LUSC tissue samples from five public datasets, consisting of 687 cases, we developed an immune-related prognostic model (IPM) according to immune genes from ImmPort database. Then, we comprehensively analyzed the immune microenvironment and mutation burden that are significantly associated with this model. According to the IPM, patients were stratified into high- and low-risk groups with markedly distinct survival benefits. We found that patients with high immune risk possessed a higher proportion of immunosuppressive cells such as macrophages M0, and presented higher expression of CD47, CD73, SIRPA, and TIM-3. Moreover, When further stratified based on the tumor mutation burden (TMB) and risk score, patients with high TMB and low immune risk had a remarkable prolonged overall survival compared to patients with low TMB and high immune risk. Finally, a nomogram combing the IPM with clinical factors was established to provide a more precise evaluation of prognosis. The proposed immune relevant model is a promising biomarker for predicting overall survival in stage I–III LUSC. Thus, it may shed light on identifying patient subset at high risk of adverse prognosis from an immunological perspective.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Ling Gong ◽  
Yi Huang ◽  
Daishun Liu

Abstract Background Lung cancer is one of the most lethal and most prevalent malignant tumors worldwide, and lung squamous cell carcinoma (LUSC) is one of the major histological subtypes. Although numerous biomarkers have been found to be associated with prognosis in LUSC, the prediction effect of a single gene biomarker is insufficient, especially for glycolysis-related genes. Therefore, we aimed to develop a novel glycolysis-related gene signature to predict survival in patients with LUSC. Methods The mRNA expression files and LUSC clinical information were obtained from The Cancer Genome Atlas (TCGA) dataset. Results Based on Gene Set Enrichment Analysis (GSEA), we found 5 glycolysis-related gene sets that were significantly enriched in LUSC tissues. Univariate and multivariate Cox proportional regression models were performed to choose prognostic-related gene signatures. Based on a Cox proportional regression model, a risk score for a three-gene signature (HKDC1, ALDH7A1, and MDH1) was established to divide patients into high-risk and low-risk subgroups. Multivariate Cox regression analysis indicated that the risk score for this three-gene signature can be used as an independent prognostic indicator in LUSC. Additionally, based on the cBioPortal database, the rate of genomic alterations in the HKDC1, ALDH7A1, and MDH1 genes were 1.9, 1.1, and 5% in LUSC patients, respectively. Conclusion A glycolysis-based three-gene signature could serve as a novel biomarker in predicting the prognosis of patients with LUSC and it also provides additional gene targets that can be used to cure LUSC patients.


2020 ◽  
Vol 17 (10) ◽  
pp. 1393-1405
Author(s):  
Zeyu Liu ◽  
Yuxiang Wan ◽  
Yuqin Qiu ◽  
Xuewei Qi ◽  
Ming Yang ◽  
...  

2019 ◽  
Author(s):  
Lei Zhang ◽  
Zhe Zhang ◽  
Zhenglun Yu

Abstract Background:Lung cancer (LC) is one of the most important and common malignant tumors, and its incidence and mortality are increasing annually. Lung squamous cell carcinoma (LUSC) is the common pathological type of lung cancer. A small part of biomarkers have been confirmed to be related to the prognosis and survival by data excavation. However, the moderate forecast effect of a single gene biomarker is not accurate. Thus, we aimed to identify new gene signatures to better predict Lung squamous cell carcinoma ( LU SC). Methods : Using the mRNA-mining approach, we performed mRNA expression profiling in large lung squamous cell carcinoma cohorts (n= from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis(GSVA) were accomplished, and connections between genes and cell cycle were found in the Cox proportional regression model. Results : We have confirmed a set of four genes (CDKN1A, CHEK2, E2F4 and RAD21) that were importantly associated with overall survival (OS) in the test series. Based on the research of the four-gene signature, the patients in the test series could be divided into high-risk and low-risk teams. Additionally, multivariate Cox regression analysis revealed that the prognostic power of the four-gene signature is independent of the clinical factors. Conclusion : Our study demonstrated the connections between the four-gene signature and cell cycle. Novel insights into the research mechanisms of cell cycle was also revealed regarding the biomarkers of a poor prognosis for lung squamous cell carcinoma patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cailian Wang ◽  
Xuyu Gu ◽  
Xiuxiu Zhang ◽  
Min Zhou ◽  
Yan Chen

BackgroundLung squamous cell carcinoma (LUSC) generally correlates with poor clinical prognoses due to the lack of available prognostic biomarkers. This study is designed to identify a potential biomarker significant for the prognosis and treatment of LUSC, so as to provide a scientific basis for clinical treatment decisions.MethodsGenomic changes in LUSC samples before and after radiation were firstly discussed to identify E2 factor (E2F) pathway of prognostic significance. A series of bioinformatics analyses and statistical methods were combined to construct a robust E2F-related prognostic gene signature. Furthermore, a decision tree and a nomogram were established according to the gene signature and multiple clinicopathological characteristics to improve risk stratification and quantify risk assessment for individual patients.ResultsIn our investigated cohorts, the E2F-related gene signature we identified was capable of predicting clinical outcomes and therapeutic responses in LUSC patients, besides, discriminative to identify high-risk patients. Survival analysis suggested that the gene signature was independently prognostic for adverse overall survival of LUSC patients. The decision tree identified the strong discriminative performance of the gene signature in risk stractification for overall survival while the nomogram demonstrated a high accuracy.ConclusionThe E2F-related gene signature may help distinguish high-risk patients so as to formulate personalized treatment strategy in LUSC patients.


2019 ◽  
Vol Volume 12 ◽  
pp. 5979-5988 ◽  
Author(s):  
Zhe Wang ◽  
Zhongmiao Wang ◽  
Xing Niu ◽  
Jie Liu ◽  
Zhuning Wang ◽  
...  

CHEST Journal ◽  
2017 ◽  
Vol 152 (6) ◽  
pp. 1239-1250 ◽  
Author(s):  
Chi-Fu Jeffrey Yang ◽  
Hanghang Wang ◽  
Arvind Kumar ◽  
Xiaofei Wang ◽  
Matthew G. Hartwig ◽  
...  

2021 ◽  
Vol 12 (6) ◽  
pp. 1708-1714
Author(s):  
Guoshu Li ◽  
Shuanshuan Xie ◽  
Feng Hu ◽  
Min Tan ◽  
Lihong Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document