scholarly journals Development and Validation of an E2F-Related Gene Signature to Predict Prognosis of Patients With Lung Squamous Cell Carcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Cailian Wang ◽  
Xuyu Gu ◽  
Xiuxiu Zhang ◽  
Min Zhou ◽  
Yan Chen

BackgroundLung squamous cell carcinoma (LUSC) generally correlates with poor clinical prognoses due to the lack of available prognostic biomarkers. This study is designed to identify a potential biomarker significant for the prognosis and treatment of LUSC, so as to provide a scientific basis for clinical treatment decisions.MethodsGenomic changes in LUSC samples before and after radiation were firstly discussed to identify E2 factor (E2F) pathway of prognostic significance. A series of bioinformatics analyses and statistical methods were combined to construct a robust E2F-related prognostic gene signature. Furthermore, a decision tree and a nomogram were established according to the gene signature and multiple clinicopathological characteristics to improve risk stratification and quantify risk assessment for individual patients.ResultsIn our investigated cohorts, the E2F-related gene signature we identified was capable of predicting clinical outcomes and therapeutic responses in LUSC patients, besides, discriminative to identify high-risk patients. Survival analysis suggested that the gene signature was independently prognostic for adverse overall survival of LUSC patients. The decision tree identified the strong discriminative performance of the gene signature in risk stractification for overall survival while the nomogram demonstrated a high accuracy.ConclusionThe E2F-related gene signature may help distinguish high-risk patients so as to formulate personalized treatment strategy in LUSC patients.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Ling Gong ◽  
Yi Huang ◽  
Daishun Liu

Abstract Background Lung cancer is one of the most lethal and most prevalent malignant tumors worldwide, and lung squamous cell carcinoma (LUSC) is one of the major histological subtypes. Although numerous biomarkers have been found to be associated with prognosis in LUSC, the prediction effect of a single gene biomarker is insufficient, especially for glycolysis-related genes. Therefore, we aimed to develop a novel glycolysis-related gene signature to predict survival in patients with LUSC. Methods The mRNA expression files and LUSC clinical information were obtained from The Cancer Genome Atlas (TCGA) dataset. Results Based on Gene Set Enrichment Analysis (GSEA), we found 5 glycolysis-related gene sets that were significantly enriched in LUSC tissues. Univariate and multivariate Cox proportional regression models were performed to choose prognostic-related gene signatures. Based on a Cox proportional regression model, a risk score for a three-gene signature (HKDC1, ALDH7A1, and MDH1) was established to divide patients into high-risk and low-risk subgroups. Multivariate Cox regression analysis indicated that the risk score for this three-gene signature can be used as an independent prognostic indicator in LUSC. Additionally, based on the cBioPortal database, the rate of genomic alterations in the HKDC1, ALDH7A1, and MDH1 genes were 1.9, 1.1, and 5% in LUSC patients, respectively. Conclusion A glycolysis-based three-gene signature could serve as a novel biomarker in predicting the prognosis of patients with LUSC and it also provides additional gene targets that can be used to cure LUSC patients.


2021 ◽  
Vol 15 (4) ◽  
pp. 295-306
Author(s):  
Hansheng Wu ◽  
Shujie Huang ◽  
Weitao Zhuang ◽  
Guibin Qiao

Aim: To build a valid prognostic model based on immune-related genes for lung squamous cell carcinoma (LUSC). Materials & methods: Differential expression of immune-related genes between LUSC and normal specimens from TCGA dataset and underlying molecular mechanisms were systematically analyzed. Constructing and validating the high-risk and low-risk groups for LUSC survival. Results: The immune-related gene-based prognostic index (IRGPI) could predict the overall survival in patients with different clinicopathological characteristics. Functional enrichment analysis of differential expression of immune-related gene signature indicated distinctive molecular pathways between high-risk and low-risk groups. Conclusion: Analysis of IRGs in LUSC enable us to stratify patients into distinct risk groups, which may help to screen LUSC patients at risk and decision making on follow-up therapeutic intervention.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9086 ◽  
Author(s):  
Xiaohan Ma ◽  
Huijun Ren ◽  
Ruoyu Peng ◽  
Yi Li ◽  
Liang Ming

Background Lung squamous cell carcinoma (LUSC) is a major subtype of lung cancer with limited therapeutic options and poor clinical prognosis. Methods Three datasets (GSE19188, GSE33532 and GSE33479) were obtained from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between LUSC and normal tissues were identified by GEO2R, and functional analysis was employed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. Protein–protein interaction (PPI) and hub genes were identified via the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Hub genes were further validated in The Cancer Genome Atlas (TCGA) database. Subsequently, survival analysis was performed using the Kapla–Meier curve and Cox progression analysis. Based on univariate and multivariate Cox progression analysis, a gene signature was established to predict overall survival. Receiver operating characteristic curve was used to evaluate the prognostic value of the model. Results A total of 116 up-regulated genes and 84 down-regulated genes were identified. These DEGs were mainly enriched in the two pathways: cell cycle and p53 signaling way. According to the degree of protein nodes in the PPI network, 10 hub genes were identified. The mRNA expression levels of the 10 hub genes in LUSC were also significantly up-regulated in the TCGA database. Furthermore, a novel seven-gene signature (FLRT3, PPP2R2C, MMP3, MMP12, CAPN8, FILIP1 and SPP1) from the DEGs was constructed and acted as a significant and independent prognostic signature for LUSC. Conclusions The 10 hub genes might be tightly correlated with LUSC progression. The seven-gene signature might be an independent biomarker with a significant predictive value in LUSC overall survival.


2020 ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Ling Gong ◽  
Yi Huang ◽  
Daishun Liu

Abstract Background: Lung cancer is one of the most lethal and most prevalent malignant tumors worldwide, and lung squamous cell carcinoma (LUSC) is one of major histological subtypes. Although, numerous biomarkers were found to be associated with prognosis in LUSC, the prediction effect of a single gene biomarker is not sufficient, especially for glycolysis-related genes. Therefore, we aimed to develop a novel glycolysis-related gene signature to predict survival of patients with LUSC.Methods: The mRNA expression files and clinical information of LUSC were obtained from The Cancer Genome Atlas (TCGA) dataset.Results: Based on Gene set enrichment analysis (GSEA), we found 5 glycolysis-related gene sets were significantly enriched in LUSC tissues. Univariate and multivariate Cox proportional regression models were conducted to choose prognostic-related gene signature. Based on Cox proportional regression model, a risk score of three-gene signature (including HKDC1, ALDH7A1, and MDH1) was established to divide patients into high-risk and low-risk subgroups. We found that a risk score of three-gene signature was an independent of prognostic indicator in LUSC using multivariate Cox regression analysis. Additionally, based on the cBioPortal database, the rate of alterations in HKDC1, ALDH7A1, and MDH1 genes were 1.9%, 1.1%, and 5% in LUSC patients, respectively. Conclusion: In conclusion, a glycolysis-based three-gene signature could serve as a novel biomarker in predicting prognosis of patients with LUSC, which provided more gene targets to cure LUSC patients.


2020 ◽  
pp. 1-11
Author(s):  
Nan Lee ◽  
Xuelian Xia ◽  
Hui Meng ◽  
Weiliang Zhu ◽  
Xiankai Wang ◽  
...  

BACKGROUND: DNA methylation plays a vital role in modulating genomic function and warrants evaluation as a biomarker for the diagnosis and treatment of lung squamous cell carcinoma (LUSC). OBJECTIVE: In this study, we aimed to identify effective potential biomarkers for predicting prognosis and drug sensitivity in LUSC. METHODS: A univariate Cox proportional hazards regression analysis, a random survival forests-variable hunting (RSFVH) algorithm, and a multivariate Cox regression analysis were adopted to analyze the methylation profile of patients with LUSC included in public databases: The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO). RESULTS: A methylated region consisting of 3 sites (cg06675147, cg07064331, cg20429172) was selected. Patients were divided into a high-risk group and a low-risk group in the training dataset. High-risk patients had shorter overall survival (OS) (hazard ratio [HR]: 2.72, 95% confidence interval [CI]: 1.82–4.07, P< 0.001) compared with low-risk patients. The accuracy of the prognostic signature was validated in the test and validation cohorts (TCGA, n= 94; GSE56044, n= 23). Gene set variation analysis (GSVA) showed that activity in the cell cycle/mitotic, ERBB, and ERK/MAPK pathways was higher in the high-risk compared with the low-risk group, which may lead to differences in OS.Interestingly, we observed that patients in the high-risk group were more sensitive to gemcitabine and docetaxel than the low-risk group, which is consistent with results of the GSVA. CONCLUSION: We report novel methylation sites that could be used as powerful tools for predicting risk factors for poorer survival in patients with LUSC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Fan ◽  
Zhiliang Lu ◽  
Yu Liu ◽  
Liyu Wang ◽  
He Tian ◽  
...  

With the increasingly early stage lung squamous cell carcinoma (LUSC) being discovered, there is an urgent need for a comprehensive analysis of the prognostic characteristics of early stage LUSC. Here, we developed an immune-related gene signature for outcome prediction of early stage LUSC based on three independent cohorts. Differentially expressed genes (DEGs) were identified using CIBERSORT and ESTMATE algorithm. Then, a 17-immune-related gene (RPRM, APOH, SSX1, MSGN1, HPR, ISM2, FGA, LBP, HAS1, CSF2, RETN, CCL2, CCL21, MMP19, PTGIS, F13A1, C1QTNF1) signature was identified using univariate Cox regression, LASSO regression and stepwise multivariable Cox analysis based on the verified DEGs from 401 cases in The Cancer Genome Atlas (TCGA) database. Subsequently, a cohort of GSE74777 containing 107 cases downloaded from Gene Expression Omnibus (GEO) database and an independent data set consisting of 36 frozen tissues collected from National Cancer Center were used to validate the predictive value of the signature. Seventeen immune-related genes were identified from TCGA cohort, which were further used to establish a classification system to construct cases into high- and low-risk groups in terms of overall survival. This classifier was still an independent prognostic factor in multivariate analysis. In addition, another two independent cohorts and different clinical subgroups validated the significant predictive value of the signature. Further mechanism research found early stage LUSC patients with high risk had special immune cell infiltration characteristics and gene mutation profiles. In conclusion, we characterized the tumor microenvironment and established a highly predictive model for evaluating the prognosis of early stage LUSC, which may provide a lead for effective immunotherapeutic options tailored for each subtype.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8288 ◽  
Author(s):  
Jie Zhu ◽  
Min Wang ◽  
Daixing Hu

Purpose There is plenty of evidence showing that autophagy plays an important role in the biological process of cancer. The purpose of this study was to establish a novel autophagy-related prognostic marker for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Methods The mRNA microarray and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by using a univariate Cox proportional regression model to select candidate autophagy-related prognostic genes. Bioinformatics analysis of gene function using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms was performed. A multivariate Cox proportional regression model helped to develop a prognostic signature from the pool of candidate genes. On the basis of this prognostic signature, we could divide LUAD and LUSC patients into high-risk and low-risk groups. Further survival analysis demonstrated that high-risk patients had significantly shorter disease-free survival (DFS) than low-risk patients. The signature which contains six autophagy-related genes (EIF4EBP1, TP63, BNIP3, ATIC, ERO1A and FADD) showed good performance for predicting the survival of LUAD and LUSC patients by having a better Area Under Curves (AUC) than other clinical parameters. Its efficacy was also validated by data from the Gene Expression Omnibus (GEO) database. Conclusion Collectively, the prognostic signature we proposed is a promising biomarker for monitoring the outcomes of LUAD and LUSC.


2020 ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Ling Gong ◽  
Yi Huang ◽  
Daishun Liu

Abstract Purpose: Lung cancer is one of the most lethal and most prevalent malignant tumors worldwide, and lung squamous cell carcinoma (LUSC) is one of major histological subtypes. Although, numerous biomarkers were found to be associated with prognosis in LUSC, the prediction effect of a single gene biomarker is not sufficient, especially for glycolysis-related genes. Therefore, we aimed to develop a novel glycolysis-related gene signature to predict survival of patients with LUSC. Material and Methods: The mRNA expression files and clinical information of LUSC were obtained from The Cancer Genome Atlas (TCGA) dataset. Results: Based on Gene set enrichment analysis (GSEA), we found 5 glycolysis-related gene sets were significantly enriched in LUSC tissues. Univariate and multivariate Cox proportional regression models were conducted to choose prognostic-related gene signature. Based on Cox proportional regression model, a risk score of three-gene signature (including HKDC1, ALDH7A1, and MDH1) was established to divide patients into high-risk and low-risk subgroups. We found that a risk score of three-gene signature was an independent of prognostic indicator in LUSC using multivariate Cox regression analysis.Conclusion: In conclusion, a glycolysis-based three-gene signature could serve as a novel biomarker in predicting prognosis of patients with LUSC, which provided more gene targets to cure LUSC patients.


Sign in / Sign up

Export Citation Format

Share Document