On twin prime power Hadamard matrices

2010 ◽  
Vol 2 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Padraig Ó Catháin ◽  
Richard M. Stafford
1975 ◽  
Vol 27 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Edward Spence

1. Introduction. We prove, using a theorem of M. Hall on cyclic projective planes, that if g is a prime power such that either 1 + q + q2 is a prime congruent to 3, 5 or 7 (mod 8) or 3 + 2q + 2q2 is a prime power, then there exists a skew-Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + q2). (A Hadamard matrix H is said to be of skew type if one of H + I, H — lis skew symmetric. ) If 1 + q + q2 is a prime congruent to 1 (mod 8), then a Hadamard matrix, not necessarily of skew type, of order 4(1 + q + q2) is constructed. The smallest new Hadamard matrix obtained has order 292.


1972 ◽  
Vol 7 (2) ◽  
pp. 233-249 ◽  
Author(s):  
Jennifer Wallis ◽  
Albert Leon Whiteman

The concepts of circulant and backcirculant matrices are generalized to obtain incidence matrices of subsets of finite additive abelian groups. These results are then used to show the existence of skew-Hadamard matrices of order 8(4f+1) when f is odd and 8f + 1 is a prime power. This shows the existence of skew-Hadamard matrices of orders 296, 592, 1184, 1640, 2280, 2368 which were previously unknown.A construction is given for regular symmetric Hadamard matrices with constant diagonal of order 4(2m + 1)2 when a symmetric conference matrix of order 4m + 2 exists and there are Szekeres difference sets, X and Y, of size m satisfying x є X ⇒ −xє X, y є Y ⇒ −y єY.


1971 ◽  
Vol 23 (3) ◽  
pp. 531-535 ◽  
Author(s):  
Richard J. Turyn

A C-matrix is a square matrix of order m + 1 which is 0 on the main diagonal, has ±1 entries elsewhere and satisfies . Thus, if , I + C is an Hadamard matrix of skew type [3; 6] and, if , iI + C is a (symmetric) complex Hadamard matrix [4]. For m > 1, we must have . Such matrices arise from the quadratic character χ in a finite field, when m is an odd prime power, as [χ(ai – aj)] suitably bordered, and also from some other constructions, in particular those of skew type Hadamard matrices. (For we must have m = a2 + b2, a, b integers.)


Author(s):  
Mieko Yamada

AbstractThe purpose of this paper is to prove (1) if q ≡ 1 (mod 8) is a prime power and there exists a Hadamard matrix of order (q − 1)/2, then we can construct a Hadamard matrix of order 4q, (2) if q ≡ 5 (mod 8) is a prime power and there exists a skew-Hadamard matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2), (3) if q ≡ 1 (mod 8) is a prime power and there exists a symmetric C-matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2).We have 36, 36 and 8 new orders 4n for n ≤ 10000, of Hadamard matrices from the first, the second and third theorem respectively, which were known to the list of Geramita and Seberry. We prove these theorems by using an adaptation of generalized quaternion type array and relative Gauss sums.


10.37236/1479 ◽  
1999 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Kharaghani

Let $4n^2$ be the order of a Bush-type Hadamard matrix with $q=(2n-1)^2$ a prime power. It is shown that there is a weighing matrix $$ W(4(q^m+q^{m-1}+\cdots+q+1)n^2,4q^mn^2) $$ which includes two symmetric designs with the Ionin–type parameters $$ \nu=4(q^m+q^{m-1}+\cdots+q+1)n^2,\;\;\; \kappa=q^m(2n^2-n), \;\;\; \lambda=q^m(n^2-n) $$ for every positive integer $m$. Noting that Bush–type Hadamard matrices of order $16n^2$ exist for all $n$ for which an Hadamard matrix of order $4n$ exist, this provides a new class of symmetric designs.


2005 ◽  
Vol 5 (2) ◽  
pp. 93-101
Author(s):  
P. Wocjan ◽  
T. Beth

We show that k=w+2 mutually unbiased bases can be constructed in any square dimension d=s^2 provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (s,k)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bounds on the asymptotic growth of the number of mutually orthogonal Latin squares (based on number theoretic sieving techniques), we obtain that the number of mutually unbiased bases in dimensions d=s^2 is greater than s^{1/14.8} for all s but finitely many exceptions. Furthermore, our construction gives more mutually unbiased bases in many non-prime-power dimensions than the construction that reduces the problem to prime power dimensions.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550017 ◽  
Author(s):  
Maarten Havinga

The main result of this paper is a construction for complex Hadamard matrices: for [Formula: see text] any prime power and [Formula: see text] the size of a real Hadamard matrix, this construction yields a family of complex Hadamard matrices of order [Formula: see text] with [Formula: see text] parameters, including Butson-type matrices of even type [Formula: see text] a divisor of [Formula: see text]. Only a few lowdimensional examples and the real Hadamard matrices obtained by this construction are already known. Also a small extension of Diţa’s construction (cf. Lemma 1) is given.


10.37236/1339 ◽  
1997 ◽  
Vol 5 (1) ◽  
Author(s):  
Yury J. Ionin

For every positive integer $m$, we construct a symmetric $(v,k,\lambda )$-design with parameters $v={{h((2h-1)^{2m}-1)}\over{h-1}}$, $k=h(2h-1)^{2m-1}$, and $\lambda =h(h-1)(2h-1)^{2m-2}$, where $h=\pm 3\cdot 2^d$ and $|2h-1|$ is a prime power. For $m\geq 2$ and $d\geq 1$, these parameter values were previously undecided. The tools used in the construction are balanced generalized weighing matrices and regular Hadamard matrices of order $9\cdot 4^d$.


Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


Sign in / Sign up

Export Citation Format

Share Document