scholarly journals The petrological characteristics and significance of organic-rich shale in the Chang 7 member of the Yanchang Formation, south margin of the Ordos basin, central China

2019 ◽  
Vol 16 (6) ◽  
pp. 1255-1269 ◽  
Author(s):  
Sen Li ◽  
Ru-Kai Zhu ◽  
Jing-Wei Cui ◽  
Zhong Luo ◽  
Jing-Gang Cui ◽  
...  

Abstract The organic-rich shale of the Chang 7 member is the most important source rock in the Ordos basin. The sedimentary environment and the controlling factors of organic matter enrichment, however, are still in contention. In this investigation, the Yishicun outcrop, located on the south margin of the Ordos basin, has been considered for the study. X-ray diffraction, polarizing microscopy, field emission scanning electron microscopy and cathodoluminescence (CL) were used to investigate the petrological features of the organic-rich shale. The content of volcanic ash and the diameter of pyrite framboid pseudocrystals were measured to illustrate the relationship between oxygen level, ash content and the enrichment of organic matter. It has been found that the diameter of pyrite framboid pseudocrystals has a strong correlation with the total organic carbon, demonstrating that the redox status degree of the water column has a positive impact on the enrichment of organic matter. Additionally, with an increase in the ash content, the content of organic matter increased at first and then decreased, and reached a maximum when the ash content was about 6%, illustrating that the ash input has a double effect on the enrichment of organic matter.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhifu Wei ◽  
Yongli Wang ◽  
Gen Wang ◽  
Ting Zhang ◽  
Wei He ◽  
...  

The organic-rich shale of the Upper Carboniferous-Lower Permian transition period in the eastern margin of the Ordos Basin, China, was formed in a marine-continental facies sedimentary environment. With a high content of total organic carbon (TOC) and a large cumulative thickness, it is considered a good source rock for shale gas development. The sedimentary environment of marine-continental transitional shale is obviously different from that of marine shale, which leads to different enrichment characteristics of organic matter. In this paper, shale samples were collected from XX# well of the Taiyuan and Shanxi Formations across the Upper Carboniferous-Lower Permian, which is typical marine-continental transitional shale. The TOC, major elements, and trace elements were measured, and the formation and preservation conditions were investigated using multiple geochemical proxies, including paleoclimate, redox parameters, paleoproductivity, and controls on the accumulation of organic matter. The TOC of Shanxi Formation is higher than that of Taiyuan Formation. In the Taiyuan Formation, TOC is positively related to the redox index (V, U, and V/Cr), indicating that the dysoxic bottom water environment is the key factor controlling organic matter accumulation. For Shanxi Formation, there is a positive correlation between TOC and paleoclimate, which indicates that the enrichment of organic matter is affected by warm and humid paleoclimate and oxic environment. In addition, the paleoproductivity is lower with a positive correlation with TOC for the marine-continental transitional organic-rich shale, suggesting that it was inferior to the gathering of organic matter.


Sign in / Sign up

Export Citation Format

Share Document