scholarly journals Retraction Note to: Light hydrocarbon geochemistry: insight into oils/condensates families and inferred source rocks of the Woodford–Mississippian tight oil play in North-Central Oklahoma, USA

2020 ◽  
Vol 17 (6) ◽  
pp. 1795-1795
Author(s):  
Ting Wang ◽  
Dong-Lin Zhang ◽  
Xiao-Yong Yang ◽  
Jing-Qian Xu ◽  
Coffey Matthew ◽  
...  

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s12182-020-00519-w.

Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120428
Author(s):  
Yingnan Zhang ◽  
Wenyue Guo
Keyword(s):  

2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2017 ◽  
Vol 54 (12) ◽  
pp. 1228-1247
Author(s):  
Zhengjian Xu ◽  
Luofu Liu ◽  
Tieguan Wang ◽  
Kangjun Wu ◽  
Wenchao Dou ◽  
...  

With the success of Bakken tight oil (tight sandstone oil and shale oil) and Eagle Ford tight oil in North America, tight oil has become a research focus in petroleum geology. In China, tight oil reservoirs are predominantly distributed in lacustrine basins. The Triassic Chang 6 Member is the main production layer of tight oil in the Ordos Basin, in which the episodes, timing, and drive of tight oil charging have been analyzed through the petrography, fluorescence microspectrometry, microthermometry, and trapping pressure simulations of fluid inclusions in the reservoir beds. Several conclusions have been reached in this paper. First, aqueous inclusions with five peaks of homogenization temperatures and oil inclusions with three peaks of homogenization temperatures occurred in the Chang 6 reservoir beds. The oil inclusions are mostly distributed in fractures that cut across and occur within the quartz grains, in the quartz overgrowth and calcite cements, and the fractures that occur within the feldspar grains, with blue–green, green, and yellow–green fluorescence colours. Second, the peak wavelength, Q650/500, and QF535 of the fluorescence microspectrometry indicate three charging episodes of tight oil with different oil maturities. The charging timings (141–136, 126–118, and 112–103 Ma) have been ascertained by projecting the homogenization temperatures of aqueous inclusions onto the geological time axis. Third, excess-pressure differences up to 10 MPa between the Chang 7 source rocks and the Chang 6 reservoir beds were the main driving mechanism supporting the process of nonbuoyancy migration.


2020 ◽  
Vol 17 (3) ◽  
pp. 582-597 ◽  
Author(s):  
Ting Wang ◽  
Dong-Lin Zhang ◽  
Xiao-Yong Yang ◽  
Jing-Qian Xu ◽  
Coffey Matthew ◽  
...  

AbstractThe Woodford–Mississippian “Commingled Production” is a prolific unconventional hydrocarbon play in Oklahoma, USA. The tight reservoirs feature variations in produced fluid chemistry usually explained by different possible source rocks. Such chemical variations are regularly obtained from bulk, molecular, and isotopic characteristics. In this study, we present a new geochemical investigation of gasoline range hydrocarbons, biomarkers, and diamondoids in oils from Mississippian carbonate and Woodford Shale. A set of oil/condensate samples were examined using high-performance gas chromatography and mass spectrometry. The result of the condensates from the Anadarko Basin shows a distinct geochemical fingerprint reflected in light hydrocarbon characterized by heptane star diagrams, convinced by biomarker characteristics and diamantane isomeric distributions. Two possible source rocks were identified, the Woodford Shale and Mississippian mudrocks, with a variable degree of mixing. Thermal maturity based on light hydrocarbon parameters indicates that condensates from the Anadarko Basin are of the highest maturity, followed by “Old” Woodford-sourced oils and central Oklahoma tight oils. These geochemical parameters shed light on petroleum migration within Devonian–Mississippian petroleum systems and mitigate geological risk in exploring and developing petroleum reservoirs.


2011 ◽  
Vol 51 (2) ◽  
pp. 746
Author(s):  
Irina Borissova ◽  
Gabriel Nelson

In 2008–9, under the Offshore Energy Security Program, Geoscience Australia (GA) acquired 650 km of seismic data, more than 3,000 km of gravity and magnetic data, and, dredge samples in the southern Carnarvon Basin. This area comprises the Paleozoic Bernier Platform and southern part of the Mesozoic Exmouth Sub-basin. The new seismic and potential field data provide a new insight into the structure and sediment thickness of the deepwater southernmost part of the Exmouth Sub-basin. Mesozoic depocentres correspond to a linear gravity low, in water depths between 1,000–2,000 m and contain between 2–3 sec (TWT) of sediments. They form a string of en-echelon northeast-southwest oriented depressions bounded by shallow-dipping faults. Seismic data indicates that these depocentres extend south to at least 24°S, where they become more shallow and overprinted by volcanics. Potential plays in this part of the Exmouth Sub-basin may include fluvio-deltaic Triassic sandstone and Lower–Middle Jurassic claystone source rocks sealed by the regional Early Cretaceous Muderong shale. On the adjoining Bernier Platform, minor oil shows in the Silurian and Devonian intervals at Pendock–1a indicate the presence of a Paleozoic petroleum system. Ordovician fluvio-deltaic sandstones sealed by the Silurian age marine shales, Devonian reef complexes and Miocene inversion anticlines are identified as potential plays. Long-distance migration may contribute to the formation of additional plays close to the boundary between the two provinces. With a range of both Mesozoic and Paleozoic plays, this under-explored region may have a significant hydrocarbon potential.


1986 ◽  
Vol 51 (2) ◽  
pp. 352-361 ◽  
Author(s):  
George C. Frison ◽  
R. L. Andrews ◽  
J. M. Adovasio ◽  
R. C. Carlisle ◽  
Robert Edgar

A net made of juniper (Juniperus sp.) bark cordage and designed for capturing animals the size of deer or mountain sheep has been radiocarbon dated to late Paleoindian times. It was recovered in the Absaroka Mountains of north-central Wyoming and provides insight into prehistoric animal procurement strategies that did not require the use of stone artifacts.


Sign in / Sign up

Export Citation Format

Share Document