scholarly journals RETRACTED ARTICLE: Light hydrocarbon geochemistry: insight into oils/condensates families and inferred source rocks of the Woodford–Mississippian tight oil play in North-Central Oklahoma, USA

2020 ◽  
Vol 17 (3) ◽  
pp. 582-597 ◽  
Author(s):  
Ting Wang ◽  
Dong-Lin Zhang ◽  
Xiao-Yong Yang ◽  
Jing-Qian Xu ◽  
Coffey Matthew ◽  
...  

AbstractThe Woodford–Mississippian “Commingled Production” is a prolific unconventional hydrocarbon play in Oklahoma, USA. The tight reservoirs feature variations in produced fluid chemistry usually explained by different possible source rocks. Such chemical variations are regularly obtained from bulk, molecular, and isotopic characteristics. In this study, we present a new geochemical investigation of gasoline range hydrocarbons, biomarkers, and diamondoids in oils from Mississippian carbonate and Woodford Shale. A set of oil/condensate samples were examined using high-performance gas chromatography and mass spectrometry. The result of the condensates from the Anadarko Basin shows a distinct geochemical fingerprint reflected in light hydrocarbon characterized by heptane star diagrams, convinced by biomarker characteristics and diamantane isomeric distributions. Two possible source rocks were identified, the Woodford Shale and Mississippian mudrocks, with a variable degree of mixing. Thermal maturity based on light hydrocarbon parameters indicates that condensates from the Anadarko Basin are of the highest maturity, followed by “Old” Woodford-sourced oils and central Oklahoma tight oils. These geochemical parameters shed light on petroleum migration within Devonian–Mississippian petroleum systems and mitigate geological risk in exploring and developing petroleum reservoirs.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ibrahim Atwah ◽  
Stephen Sweet ◽  
John Pantano ◽  
Anthony Knap

The Mississippian limestone is a prolific hydrocarbon play in the northern region of Oklahoma and the southern part of Kansas. The Mississippian reservoirs feature variations in produced fluid chemistry usually explained by different possible source rocks. Such chemical variations are regularly obtained from bulk, molecular, and isotopic characteristics. In this study, we present a new geochemical investigation of gasoline range hydrocarbons, biomarkers, phenols, and diamondoids in crude oils produced from Mississippian carbonate and Woodford Shale formations. A set of oil samples was examined for composition using high-performance gas-chromatography and mass-spectrometry techniques. The result shows a distinct geochemical fingerprint reflected in biomarkers such as the abundance of extended tricyclic terpanes, together with heptane star diagrams, and diamantane isomeric distributions. Such compounds are indicative of the organic matter sources and stages of thermal maturity. Phenolic compounds varied dramatically based on geographic location, with some oil samples being depleted of phenols, while others are intact. Based on crude oil compositions, two possible source rocks were identified including the Woodford Shale and Mississippian mudrocks, with a variable degree of mixing reported. Variations in phenol concentrations reflect reservoir fluid dynamic and water interactions, in which oils with intact phenols are least affected by water-washing conversely and crude oils depleted in phenols attributed to reservoir water-washing. These geochemical parameters shed light into petroleum migration within Devonian-Mississippian petroleum systems and mitigate geological risk in exploring and developing petroleum reservoirs.


2019 ◽  
Vol 16 (5) ◽  
pp. 972-980
Author(s):  
Ting Wang ◽  
Jacobi David

Abstract The Devonian Woodford Shale in the Anadarko Basin is a highly organic, hydrocarbon source rock. Accurate values of vitrinite reflectance (Ro) present in the Woodford Shale penetrated by 52 control wells were measured directly. These vitrinite reflectance values, when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells, display a rarely reported finding that deep resistivity readings decrease as Ro increases when Ro is greater than 0.90%. This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds. And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak. The finding of the relationship between deep resistivity and Ro may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2020 ◽  
Vol 17 (6) ◽  
pp. 1795-1795
Author(s):  
Ting Wang ◽  
Dong-Lin Zhang ◽  
Xiao-Yong Yang ◽  
Jing-Qian Xu ◽  
Coffey Matthew ◽  
...  

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s12182-020-00519-w.


Sign in / Sign up

Export Citation Format

Share Document