Clinical usefulness of WT1 mRNA expression in bone marrow detected by a new WT1 mRNA assay kit for monitoring acute myeloid leukemia: a comparison with expression of WT1 mRNA in peripheral blood

2015 ◽  
Vol 103 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Kunio Kitamura ◽  
Takahiro Nishiyama ◽  
Ken Ishiyama ◽  
Shuichi Miyawaki ◽  
Kanji Miyazaki ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2855-2855
Author(s):  
Wanlong Ma ◽  
Xi Zhang ◽  
Iman Jilani ◽  
Farhad Ravandi ◽  
Elihu Estey ◽  
...  

Abstract Nucleotides insertion in the nucleophosphamin (NPM1) gene has been reported in about one third of patients with acute myeloid leukemia (AML). Multiple studies showed that the presence of NPM1 mutations associated with better outcome in patients with AML. Studies reported to date have analyzed leukemic cells obtained from bone marrow or peripheral blood. We tested for mutations in the NPM1 gene using peripheral blood plasma and compared results with clinical outcome from a single institution. Analyzing plasma from 98 newly diagnosed patient with AML showed NPM1 mutation in 24 (23%) of patient while only one (4%) of 28 previously untreated patients with myelodysplastic syndrome (MDS) showed NPM1 mutation. Compared with peripheral blood cells, 2 (8%) of the 24 positive patients were negative by cells; none were positive by cells and negative by plasma. Most of the mutations detected (45%) were in patients with FAB classification M2, M4 and M5. In addition to the reported 4 bp insertion, we also detected 4 bp deletion in one patient in cells and plasma. Patients with NPM1 mutation had a significantly higher white blood cell count (P = 0.0009) and a higher blast count in peripheral blood (P = 0.002) and in bone marrow (P = 0.002). Blasts in patients with NPM1 mutant expressed lower levels of HLA-DR (P = 0.005), CD13 (P = 0.02) and CD34 (P < 0.0001), but higher CD33 levels (P = 0.0004). Patients with NPM1 mutation appear to have better chance of responding to standard therapy (P = 0.06). Event free survival of patients with NPM1 mutation was longer (P = 0.056) than in patients with intermediate cytogenetic abnormalities. The most striking difference in survival was in patients who required >35 days to respond to therapy (Figure). Survival was significantly longer in patients with NPM1 mutation requiring >35 days to respond (P = 0.027). This data not only support that NPM1 plays a significant role in the biology and clinical behavior of AML, but also show that plasma DNA is enriched with leukemia-specific DNA and is a reliable source for testing. Figure Figure


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4379-4379
Author(s):  
Nobuhiko Nakamura ◽  
Soranobu Ninomiya ◽  
Takeshi Hara ◽  
Kenji Fukuno ◽  
Masato Hoshi ◽  
...  

Abstract Abstract 4379 Background Indoleamine 2,3-dioxygenase (IDO) is endowed with intense immunomodulatory effects due to its enzymatic activities that catalyse the breakdown of the essential amino acid L-tryptophan. Recently, blasts of patients with acute myeloid leukemia were shown to express IDO. We determined IDO mRNA expression in leukemic blasts of patients with acute myeloid leukemia (AML) by reverse transcriptase PCR. Patients and methods After informed consent and according to the recommendations as defined in the declaration of Helsinki, bone marrow derived samples were collected from patients with AML. Patients were classified according to the French-American-British (FAB) classification. We investigated 37 patients between December 2000 and March 2007 who were diagnosed with AML. All follow-up data were updated on July 1, 2010. Bone marrow derived mononuclear cell fractions from patients with AML were obtained by Ficoll centrifugation. For reverse transcriptase PCR, RNA was isolated using RNA-Bee solution (Tel-Test Inc, Friendswood, TX, USA). Total RNA was stored at -80°C. cDNA synthesis was performed. PCR amplification was performed with a LightCycler real-time PCR machine (Roche Diagnostics, Almere, the Netherlands). Reaction volumes were 20 μ L, consisting of 2 μ L cDNA, 2 μ L of LightCycler Fast Start DNA SYBR Green Mastermix (Roche) and 0.5 μ M reverse and forward primers. MgCl2 was added to a final concentration of 3.5 μ M. qPCR conditions consisted of an initial denaturation step at 95°C for 10 min, followed by 45 cycles, each for 15 sec at 95°C, 10 sec at 58°C and 10 sec at 72°C. Primer sequences were: IDO forward: 5’-GTGTTTCACCAAATCCACGA-3’, reverse: 5’-CTGATAGCTGGGGGTTGC-3’; (Nijmegen, the Netherlands). To determine associations between variables, Spearman's correlation coefficient was used. Differences between patients’ characteristics were analyzed with the Mann-Whitney U test. The effects of several pretreatment characteristics including IDO expression upon survival were examined by univariate analyses using the Kaplan-Meier method and the log-rank test. P values of <0.05 indicated significance. Results Thirty seven patients were analyzed for the expression of IDO by reverse transcriptase PCR. We confirmed that 17 patients with IDO mRNA expression and 19 patients were without IDO mRNA expression by reverse transcriptase PCR. No significant differences were found between IDO mRNA expression of different FAB subtypes and cytogenetic risk profiles. We found no significant correlation between IDO mRNA expression and age, gender, or white blood cell counts. The 5-year OS rates for patients with IDO mRNA expression and without IDO mRNA expression were 64% and 41%, respectively (P <0.05). Other significantly worse factors were not found. Conclusion IDO mRNA expression was correlated to significantly shortened overall survival. Inhibition of IDO expressed by AML blasts may result in breaking immune tolerance and offers new therapeutic options for patients with acute myeloid leukemia. IDO mRNA expression might be a significant prognostic factor and a useful tool for selecting appropriate therapeutic strategies for patients with AML. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Paulina Gil-Kulik ◽  
Ewa Dudzińska ◽  
Elżbieta Radzikowska-Büchner ◽  
Joanna Wawer ◽  
Mariusz Jojczuk ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogenic lethal disorder characterized by the accumulation of abnormal myeloid progenitor cells in the bone marrow, which results in hematopoietic failure. Despite various efforts in detection and treatment, many patients with AML die of this cancer. That is why it is important to develop novel therapeutic options, employing strategic target genes involved in apoptosis and tumor progression. The aim of the study was to evaluate PARP1, PARP2, PARP3, and TRPM2 gene expression at the mRNA level in the cells of the hematopoietic system of the bone marrow in patients with acute myeloid leukemia, bone marrow collected from healthy patients, peripheral blood of healthy individuals, and hematopoietic stem cells from the peripheral blood after mobilization.Results: The results found that the bone marrow cells of patients with acute myeloid leukemia (AML) show over expression of PARP1 and PARP2 genes and decreased TRPM2 gene expression. In the hematopoietic stem cells derived from the normal marrow and peripheral blood after mobilization, the opposite situation was observed, i.e. TRPM2 gene showed increased expression while PARP1 and PARP2 gene expression was reduced. We observed the positive correlations between PARP1, PARP2, PARP3, and TRPM2 genes expression in the group of mature mononuclear cells derived from the peripheral blood and in the group of bone marrow-derived cells. In AML cells significant correlations were not observed between the expression of the examined genes.Conclusions: Our research suggests that in physiological conditions in the cells of the hematopoietic system there is mutual positive regulation of PARP1, PARP2, PARP3, and TRPM2 genes expression. PARP1, PARP2, and TRPM2 genes at mRNA level deregulate in acute myeloid leukemia cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3427-3427
Author(s):  
Michael H Kramer ◽  
Qiang Zhang ◽  
Robert W. Sprung ◽  
Petra Erdmann-Gilmore ◽  
Daniel R George ◽  
...  

Abstract Introduction: Proteins, despite being the primary effectors of cellular processes, are often studied only indirectly through analysis of the transcriptome. However, it is clear that the relationship between mRNA expression and protein expression is approximate at best. In Acute Myeloid Leukemia (AML), the genome and transcriptome have been thoroughly characterized, but the proteome has been less well studied. Here, we present a deep-scale study of the proteomes of 44 primary AML bone marrow samples representing a wide range of AML across the spectrum of cytogenetic risk, common mutations, and driver fusions. Methods: Bone marrow samples were collected at presentation from 44 adult patients with de novo AML as part of an institutional banking protocol, and buffy coat cells were immediately cryopreserved without further manipulation. Cryovials were thawed in the presence of the cell permeable serine protease inhibitor diisopropyl fluorophosphate (DFP) to inactivate the abundant neutrophil serine proteases (ELANE, CTSG, PRTN3, and PRSS57), and further processed for nano-liquid chromatography mass spectrometry in the presence of an extensive cocktail of protease inhibitors. Both label-free quantification (LFQ) and tandem-mass-tag (TMT) deep-scale proteomics were performed on these 44 patient samples, as well as 3 lineage-depleted bone marrow samples from healthy adult donors. Matching RNA-seq and exome sequencing data were available for the same samples as part of The Cancer Genome Atlas (TCGA) AML project. Results: 10,651 and 6,679 unique proteins were detected in the TMT and LFQ experiments, respectively. Correlations between measurements derived from the independent proteomic platforms (i.e. TMT and LFQ) is higher (mean Spearman correlation, 0.60, Figure 1A) than correlation between proteomic (TMT) and transcriptomic measurements from bulk RNA-seq data (Spearman 0.43, Figure 1B). Quality checks of the proteomic data strongly supported the reliability of quantification of protein measurements; for example, the mean ratio of beta globin protein (HBB) to alpha globin (HBA1) was 1.2 +/- 0.25 (Figure 1C), and several proteins known to be dysregulated by specific AML-initiating fusion proteins (for PML-RARA, HGF and RARA; for RUNX1-RUNX1T1, RUNX1T1; and for CBFB-MYH11, MYH11) were detected in the expected samples (Figure 1D). Globally, 1,364 proteins were differentially expressed in the AML samples (corrected p-value &lt;0.05, fold change ≥ 1.5) compared to the lineage-depleted, healthy bone marrow samples. Globally overexpressed proteins were enriched for ribosomal RNA modification, mitochondrial protein import, nuclear export, and the mitochondrial electron transport chain, among others. These overexpressed proteins include 61 cell surface proteins that could potentially represent therapeutic targets (overexpressed on average in 82% of AML samples, range 25-97%). Globally downregulated proteins in AML samples were enriched for glycogen metabolism and protein groups associated with mature neutrophils (reflecting the expected maturation block in AML), among others. 771 of the 1364 differentially expressed proteins (56.5%) showed only minimal variability in mRNA expression levels (fold change of &lt;1.1 between AML and normal marrow CD34 cell mRNA) that could not explain dysregulated protein expression. Several protein complexes likewise showed coordinated differential expression in the proteomic data, but no change in the transcriptome, including the THO complex (Figure 1E) and the phosphorylase kinase complex (Figure 1F), among others, indicating the presence of posttranscriptional regulation of the levels of many proteins in AML samples. Conclusion: We have created a deep-scale proteomic database from a set of well-characterized AML samples, allowing for a proteogenomic study of AML. We have identified many examples of post-transcriptional regulation of key metabolic pathways that may be relevant for better understanding AML cell metabolism and therapeutic vulnerabilities. Additional studies linking patterns of protein dysregulation with a variety of AML covariates are underway. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2939-2939
Author(s):  
Robin L. Perry ◽  
Patricia Vanessa Sanchez ◽  
Jean-Emmanuel Sarry ◽  
Alexander Perl ◽  
Adam Bagg ◽  
...  

Abstract Xenotransplantation of human acute myeloid leukemia (AML) in immunocompromised animals has been critical for the definition of leukemic stem cells. However, existing immunodeficient strains such as NOD/SCID and NOD/SCID/b2mnull have short life spans, age dependent leakiness of humoral immunity and low levels of AML cell engraftment making long-term evaluation of primary human AML biology difficult. A recent study suggested that the nonobese diabetic/severe combined immondeficient/IL2Rgnull (NOG) mouse has enhanced ability to engraft AML cells but this study relied on neonatal injections that are technically challenging. We performed an extensive analysis of AML engraftment in adult NOG mice using intravenous tail vein injection. Thirty-six different AML samples were analyzed including 2 samples of acute promyelocytic leukemia (APML). We used a threshold for AML engraftment of &gt;0.5% human CD45+33+ cells in the murine bone marrow. Based on this threshold, 22 samples (61%) showed engraftment in NOG mice. Of these samples, 14 (64%) showed high levels of engraftment (greater than 10% of murine marrow replaced with human CD45+CD33+ cells). Engraftment did not correlate with FAB subtype or cytogenetic abnormalities to a statistically significant degree, however we noted that one sample with an 11q23 translocation and several samples with Flt3 ITD mutations showed consistent high level engraftment. Several samples demonstrated engraftment as high as 95% of the murine marrow with total AML cell expansion of 2-30 fold. Evaluation of AML stem cell frequency and expansion is ongoing. Engraftment in spleen was variable and in general significantly lower than in bone marrow. For most samples, peripheral blood engraftment was barely detectable. In contrast to NOD/SCID mice, both APML samples engrafted well in the NOG mouse with high levels of peripheral blood involvement. Some samples occasionally showed engraftment of a population of cells expressing CD2 and other T cell associated markers by flow cytometry, however this observation was inconsistent even between mice injected with the same sample. All samples tested (n=5) showed consistent engraftment in secondary and tertiary recipients with most samples tested showing further expansion of total AML cells in subsequent transplants. Importantly, a number of animals developed organomegaly and a wasting illness consistent with advanced leukemic disease. Several such animals showed extramedullary leukemic infiltration into non-hematopoietic tissues. Etoposide monotherapy (40 mg/kg in divided doses) of heavily engrafted mice did not induce a significant response in terms of leukemia regression. Studies of other chemotherapeutic agents are ongoing. We conclude that the NOG xenotransplantation model is a robust model for studying human AML cell engraftment which will allow for better characterization of AML biology and testing of new therapies


Sign in / Sign up

Export Citation Format

Share Document