Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis

Author(s):  
Busra Buyuk ◽  
Sha Jin ◽  
Kaiming Ye
2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13100-e13100
Author(s):  
Shirley Jusino ◽  
Srikumar P. Chellappan ◽  
Harold I. Saavedra

e13100 Background: Triple-negative breast cancer (TNBC) is the most aggressive and poorly prognostic breast cancer subtype, yet there are currently no biological therapies against this subtype. Our laboratory is finding the sources of novel biological targets in TNBC by studying the E2F transcription factors, which are essential for cellular proliferation and maintenance of genomic stability. While the deregulated Rb/E2F pathway signals the epithelial-to-mesenchymal transition (EMT), the underlining mechanism of how E2Fs drive EMT in TNBC remains unknown. We recently published that the E2F transcriptional activators (E2Fs) are overexpressed in the vast majority of TNBC and that their overexpression upregulates mitotic kinases such as TTK, which we have shown to induce EMT and invasion in TNBC cells. We also demonstrated that the E2Fs maintain genomic integrity in part through Shugoshin I (SGO1), which normally controls chromosome cohesion; however, the role of SGO1 in EMT in breast cancer is unknown. Our hypothesis is that E2F3 and SGO1 are highly expressed in TNBC and that their overexpression modulates EMT genes, thus promoting cell invasion. Methods: To test our hypothesis, we conducted siRNA transfection to knockdown E2F3 and SGO1 in MDA-MB-231 and Hs578t, which are TNBC cells. After 48 hours, we evaluated mRNA levels of EMT-related genes after E2F3 or SGO1 depletion using RT-PCR analysis. We also evaluated the effects of SGO1 depletion in protein localization by immunofluorescence. Furthermore, we evaluated the invasive behavior of MDA-MB-231 and Hs578t cells after SGO1 depletion using a Boyden Chamber Assay. Results: Our results demonstrate that E2F3 and SGO1 depletion decrease MMP3 mRNA levels. Moreover, E2F3 and SGO1 depletion restore E-cadherin expression and localization. Furthermore, E2F3 and SGO1 depletion significantly reduce cell invasion in MDA-MB-231 and Hs578t cells. Conclusions: Our results suggest that SGO1 is a promising drug target for breast cancer metastasis since EMT and invasion are essential early steps in breast cancer metastasis and E2F3 is presently undruggable.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1802 ◽  
Author(s):  
Qi-Yuan Huang ◽  
Guo-Feng Liu ◽  
Xian-Ling Qian ◽  
Li-Bo Tang ◽  
Qing-Yun Huang ◽  
...  

As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 307
Author(s):  
Li-Bo Tang ◽  
Shu-Xin Ma ◽  
Zhuo-Hui Chen ◽  
Qi-Yuan Huang ◽  
Long-Yuan Wu ◽  
...  

As a major threat factor for female health, breast cancer (BC) has garnered a lot of attention for its malignancy and diverse molecules participating in its carcinogenesis process. Among these complex carcinogenesis processes, cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis are the major causes for the occurrence of metastasis and chemoresistance which account for cancer malignancy. MicroRNAs packaged and secreted in exosomes are termed “exosomal microRNAs (miRNAs)”. Nowadays, more researches have uncovered the roles of exosomal miRNAs played in BC metastasis. In this review, we recapitulated the dual actions of exosomal miRNAs exerted in the aggressiveness of BC by influencing migration, invasion, and distant metastasis. Next, we presented how exosomal miRNAs modify angiogenesis and stemness maintenance. Clinically, several exosomal miRNAs can govern the transformation between drug sensitivity and chemoresistance. Since the balance of the number and type of exosomal miRNAs is disturbed in pathological conditions, they are able to serve as instructive biomarkers for BC diagnosis and prognosis. More efforts are needed to connect the theoretical studies and clinical traits together. This review provides an outline of the pleiotropic impacts of exosomal miRNAs on BC metastasis and their clinical implications, paving the way for future personalized drugs.


2020 ◽  
Vol 14 (1) ◽  
pp. 8
Author(s):  
Norlaily Mohd Ali ◽  
Swee Keong Yeap ◽  
Wan Yong Ho ◽  
Lily Boo ◽  
Huynh Ky ◽  
...  

Globally, breast cancer is the most frequently diagnosed cancer in women, and it remains a substantial clinical challenge due to cancer relapse. The presence of a subpopulation of dormant breast cancer cells that survived chemotherapy and metastasized to distant organs may contribute to relapse. Tumor microenvironment (TME) plays a significant role as a niche in inducing cancer cells into dormancy as well as involves in the reversible epithelial-to-mesenchymal transition (EMT) into aggressive phenotype responsible for cancer-related mortality in patients. Mesenchymal stem cells (MSCs) are known to migrate to TME and interact with cancer cells via secretion of exosome- containing biomolecules, microRNA. Understanding of interaction between MSCs and cancer cells via exosomal miRNAs is important in determining the therapeutic role of MSC in treating breast cancer cells and relapse. In this study, exosomes were harvested from a medium of indirect co-culture of MCF7-luminal and MDA-MB-231-basal breast cancer cells (BCCs) subtypes with adipose MSCs. The interaction resulted in different exosomal miRNAs profiles that modulate essential signaling pathways and cell cycle arrest into dormancy via inhibition of metastasis and epithelial-to-mesenchymal transition (EMT). Overall, breast cancer cells displayed a change towards a more dormant-epithelial phenotype associated with lower rates of metastasis and higher chemoresistance. The study highlights the crucial roles of adipose MSCs in inducing dormancy and identifying miRNAs-dormancy related markers that could be used to identify the metastatic pattern, predict relapses in cancer patients and to be potential candidate targets for new targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document