Fine-Grained Opinion Extraction from Chinese Car Reviews with an Integrated Strategy

2018 ◽  
Vol 23 (5) ◽  
pp. 620-626
Author(s):  
Yinglin Wang ◽  
Ming Wang
2020 ◽  
Vol 34 (05) ◽  
pp. 8600-8607
Author(s):  
Haiyun Peng ◽  
Lu Xu ◽  
Lidong Bing ◽  
Fei Huang ◽  
Wei Lu ◽  
...  

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.


Author(s):  
Stefanos Angelidis ◽  
Mirella Lapata

We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call SpoT (as shorthand for Segment-level POlariTy annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.


Author(s):  
Zhen Wu ◽  
Chengcan Ying ◽  
Fei Zhao ◽  
Zhifang Fan ◽  
Xinyu Dai ◽  
...  

Author(s):  
Wenya Wang ◽  
Sinno Jialin Pan

In fine-grained opinion mining, aspect and opinion terms extraction has become a fundamental task that provides key information for user-generated texts. Despite its importance, a lack of annotated resources in many domains impede the ability to train a precise model. Very few attempts have applied unsupervised domain adaptation methods to transfer fine-grained knowledge (in the word level) from some labeled source domain(s) to any unlabeled target domain. Existing methods depend on the construction of “pivot” knowledge, e.g., common opinion terms or syntactic relations between aspect and opinion words. In this work, we propose an interactive memory network that consists of local and global memory units. The model could exploit both local and global memory interactions to capture intra-correlations among aspect words or opinion words themselves, as well as the interconnections between aspect and opinion words. The source space and the target space are aligned through these domaininvariant interactions by incorporating an auxiliary task and domain adversarial networks. The proposed model does not require any external resources and demonstrates promising results on 3 benchmark datasets.


The most critical tools for fine-grained opinion extraction are opinion goals and opinion terms extracted from on-line comments. The key part of this process is to identify the connection between terms. To do this, the Word Alignment Model (WAM) was introduced in which the associated variable can be identified by word alignment by an opinion goal. Nevertheless, its ability to extract opinion words was less successful. In order to determine opinion connections as a process of alignment, the partially supervised Word Alienation Model (PSWAM) has therefore been created. Then a visual co-ranking algorithm was implemented together with the Opinion Relationship Map, to model all the candidates and to measure the confidence of each voter by defining their opinion. In addition, higher-confidence candidates were extracted as opinions or opinions. This method, though, involves an added kind of interaction with terms such as topical connections in graphic thought. Therefore the current relationship is assumed in this report in order to model the applicants and derive the feelings, views and opinions. The efficiency of co-extracting thoughts, viewpoints and issues is enhanced effectively by using this method. The experimental results further indicate that compared to the existing paradigm, the efficiency of the proposed model.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Sign in / Sign up

Export Citation Format

Share Document