Nonlinear Dynamic Responses of Sliding Isolation Concrete Liquid Storage Tank with Limiting-Devices

2019 ◽  
Vol 23 (7) ◽  
pp. 3005-3020
Author(s):  
Xuansheng Cheng ◽  
Wei Jing ◽  
Huan Feng
2019 ◽  
Vol 9 (11) ◽  
pp. 2376 ◽  
Author(s):  
Wei Jing ◽  
Huan Feng ◽  
Xuansheng Cheng

Based on potential flow theory and arbitrary Lagrangian–Eulerian method, shell–liquid and shell–wind interactions are solved respectively. Considering the nonlinearity of tank material and liquid sloshing, a refined 3-D wind–shell–liquid interaction calculation model for liquid storage tanks is established. A comparative study of dynamic responses of liquid storage tanks under wind, earthquake, and wind and earthquake is carried out, and the influences of wind speed and wind interference effect on dynamic responses of liquid storage tank are discussed. The results show that when the wind is strong, the dynamic responses of the liquid storage tank under wind load alone are likely to be larger than that under earthquake, and the dynamic responses under wind–earthquake interaction are obviously larger than that under wind and earthquake alone. The maximum responses of the tank wall under wind and earthquake are located in the unfilled area at the upper part of the tank and the filled area at the lower part of the tank respectively, while the location of maximum responses of the tank wall under wind–earthquake interaction is related to the relative magnitude of the wind and earthquake. Wind speed has a great influence on the responses of liquid storage tanks, when the wind speed increases to a certain extent, the storage tank is prone to damage. Wind interference effect has a significant effect on liquid storage tanks and wind fields. For liquid storage tanks in special environments, wind and earthquake effects should be considered reasonably, and wind interference effects cannot be ignored.


2021 ◽  
Vol 11 (10) ◽  
pp. 4688
Author(s):  
Chae-Been Lee ◽  
Jin-Ho Lee

The dynamic responses of a concrete rectangular liquid storage tank on the surface of rigid soil subjected to three-directional earthquake ground motion are investigated with material nonlinearity taken into consideration. Material nonlinearity in concrete is considered using the concrete damage plasticity model. The hydrodynamic pressure due to earthquake ground motion is considered using a finite-element solution of the governing equation for an inviscid and incompressible ideal fluid with the fluid–structure interaction taken into consideration. It was observed from the dynamic analyses that the effects of material nonlinearity and directionality significantly affect the earthquake responses of the considered system. The relative displacement of the structure increased significantly by the nonlinearity of the material. Inclined cracks due to the increased displacement were observed on the long-sided walls. The hydrodynamic pressure can be reduced significantly by the material nonlinearity and is influenced by the directionality of an earthquake’s ground motion. The base shear and overturning moment due to the hydrodynamic pressure and the resulting impulsive mass and corresponding height for a simplified mass-spring analogy are also affected. Because the directionality was observed to have a significant influence on the peak value of the sloshing height, it must be estimated with the directionality considered.


2015 ◽  
Vol 29 (3) ◽  
pp. 1289-1295 ◽  
Author(s):  
Hyo Seok Son ◽  
Chul Kim ◽  
Douglas Reindl ◽  
Hiki Hong

2020 ◽  
Vol 10 (7) ◽  
pp. 2312
Author(s):  
Jilin Hou ◽  
Haiyan Wang ◽  
Dengzheng Xu ◽  
Łukasz Jankowski ◽  
Pengfei Wang

Damage identification for liquid–solid coupling structures remains a challenging topic due to the influence of liquid and the limitation of experimental conditions. Therefore, the adding mass method for damage identification is employed in this study. Adding mass to structures is an effective method for damage identification, as it can increase not only the experimental data but also the sensitivity of experimental modes to local damage. First, the fundamental theory of the adding mass method for damage identification is introduced. After that, the method of equating the liquid to the attached mass is proposed by considering the liquid–solid coupling. Finally, the effectiveness and reliability of damage identification, based on adding mass for liquid–solid coupling structures, are verified through experiments of a submerged cantilever beam and liquid storage tank.


Sign in / Sign up

Export Citation Format

Share Document