Effects of operating parameters on the combustion oscillation behaviour in a lean premixed CH4 combustor

Author(s):  
Chengfei Tao ◽  
Hao Zhou
1993 ◽  
Vol 115 (3) ◽  
pp. 554-562 ◽  
Author(s):  
L. H. Cowell ◽  
K. O. Smith

Development of a lean-premixed, liquid-fueled combustor is in progress to achieve ultra-low NOx emissions at typical gas turbine operating conditions. A filming fuel injector design was tested on a bench scale can combustor to evaluate critical design and operating parameters for low-emissions performance. Testing was completed using No. 2 diesel. Key design variables tested include premixing length, swirler angle, injector centerbody diameter, and reduced liner cooling. NOx emissions below 12 ppmv at 9 bar pressure were measured. Corresponding CO levels were 50 ppmv. An optimized injector design was fabricated for testing in a three injector sector of an annular combustor. Operating parameters and test results are discussed in the paper.


2017 ◽  
Vol 31 (9) ◽  
pp. 10060-10067 ◽  
Author(s):  
Peifeng Sun ◽  
Yiren Yuan ◽  
Bing Ge ◽  
Yinshen Tian ◽  
Zilai Zhang ◽  
...  

Author(s):  
L. H. Cowell ◽  
K. O. Smith

Development of a lean-premixed, liquid-fueled combustor is in progress to achieve ultra-low NOx emissions at typical gas turbine operating conditions. A filming fuel injector design was tested on a bench scale can combustor to evaluate critical design and operating parameters for low emissions performance. Testing was completed using No. 2 diesel. Key design variables tested include premixing length, swirler angle, injector centerbody diameter, and reduced liner cooling. NOx emissions below 12 ppmv at 9 bars pressure were measured. Corresponding CO levels were 50 ppmv. An optimized injector design was fabricated for testing in a 3 injector sector of an annular combustor. Operating parameters and test results are discussed in this paper.


Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
David C Joy

The electron source is the most important component of the Scanning electron microscope (SEM) since it is this which will determine the overall performance of the machine. The gun performance can be described in terms of quantities such as its brightness, its source size, its energy spread, and its stability and, depending on the chosen application, any of these factors may be the most significant one. The task of the electron gun in an SEM is, in fact, particularly difficult because of the very wide range of operational parameters that may be required e.g a variation in probe size of from a few angstroms to a few microns, and a probe current which may go from less than a pico-amp to more than a microamp. This wide range of operating parameters makes the choice of the optimum source for scanning microscopy a difficult decision.Historically, the first step up from the sealed glass tube ‘cathode ray generator’ was the simple, diode, tungsten thermionic emitter.


2020 ◽  
Vol 21 (6) ◽  
pp. 612
Author(s):  
Yunkun Wei ◽  
Tianhong Zhang ◽  
Zhonglin Lin ◽  
Qi Xie ◽  
Yan Zhang

After the lean fuel premixed combustion technology is applied to aero engines, severe combustion oscillations will be cased and led to hidden safety hazards such as engine vibration, further energy waste and other problems. Therefore, it is increasingly important to actively control combustion oscillations. In this paper, a multispectral radiation thermometry (MRT) is used to analyze the hydroxyl group, which is a measurable research object in the combustion chamber of an aero engine, and to fit the functional relationship between the radiation intensity ratio and the temperature in different bands. The theoretical value of the error is <2%. At the same time, in order to solve the problem of weak detection signal and excessive interference signal, an improved frequency domain filtering method based on fast Fourier transform is designed. Besides, the FPGA platform is used to ensure the real-time performance of the temperature measurement system, and simulations and experiments are performed. An oscillating signal with an oscillation frequency of 315 Hz is obtained on the established test platform, and the error is only 1.42%.


2018 ◽  
Author(s):  
Jakob Seidenbecher ◽  
Fabian Herz ◽  
Eckehard Specht ◽  
S. Wirtz ◽  
A. Berndt ◽  
...  

2018 ◽  
Vol 6 (6) ◽  
pp. 16-23
Author(s):  
Boris K. MAKSIMOV ◽  
◽  
Tat’yana G. KLIMOVA ◽  
Andrei V. ZHUKOV ◽  
Dmitrii M. DUBININ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document